
Strong replication in the GLOB DATA middleware∗

Luı́s Rodrigues Hugo Miranda Ricardo Almeida João Martins Pedro Vicente

Universidade de Lisboa

Faculdade de Ciências

Departamento de Informtica

{ler,hmiranda,ralmeida,jmartins,pedrofrv }@di.fc.ul.pt

Abstract

GLOBDATA is a project that aims to design and implement a middleware tool offering the abstraction of a

global object database repository. This tool, calledCOPLA, supports transactional access to geographically

distributed persistent objects independent of their location. Additionally, it supports replication of data

according to different consistency criteria. For this purpose,COPLA implements a number of consistency

protocols offering different tradeoffs between performance and fault-tolerance.

This paper presents the work on strong consistency protocols for theGLOBDATA system. Two protocols

are presented: a voting protocol and a non-voting protocol. Both these protocols rely on the use of atomic

broadcast as a building block to serialize conflicting transactions. The paper also introduces the total order

protocol being developed to support large-scale replication.

1 Introduction

GLOBDATA 1 [1] is an European IST project started in November 2000 that aims to design and imple-

ment a middleware tool offering the abstraction of a global object database repository. The tool, called

COPLA, supports transactional access to geographically distributed persistent objects independent of their

location. Application programmers have an object-oriented view of the data repository and do not need to
∗Parts of this report will be published in the Proceedings of the Workshop on Dependable Middleware-Based Systems, Wash-

ington D.C., USA, June 2002. (Part of Dependable Systems and Networks Conference, DSN 2002). This work has been partially

supported by the project IST-1999-20997,GLOBDATA .
1The GLOBDATA partners are: Instituto Tecnológico de Inforḿatica de Valencia (ITI), Spain; Faculdade de Ciências da Uni-

versidade de Lisboa (FCUL), Portugal; Universidad Pública de Navarra (UPNA), Spain; GFI Informatique (GFI), France; Investi-

gacíon y Desarrollo Infoŕatico (IDI EIKON), Spain.

1

be concerned of how the objects are stored, distributed or replicated. TheCOPLA middleware supports the

replication of data according to different consistency criteria. Each consistency criteria is implemented by

one or more consistency protocols, that offer different tradeoffs between performance and fault-tolerance.

This paper reports the work on strong consistency replication protocols for theGLOBDATA system that is

being performed by the Distributed ALgorithms and Network Protocols (DIALNP) group at Universidade

de Lisboa. Based on the previous work of [17, 16], two protocols are being implemented: a voting protocol

and a non-voting protocol. Each of these protocols supports two variants, namely eager updates and deferred

updates. The protocols are executed on top of an off-the-shelf relational database that is used to store the

state of persistent objects and protocol control information. All protocols rely on the use of atomic broadcast

as a building block to help serialize conflicting transactions. A specialized total order protocol is being

implemented in theAppia system [14] to support replication in large-scale. The atomic protocol inherits

ideas from the hybrid protocol of [19]. The paper introduces theGLOBDATA architecture, and resumes both

the consistency protocols and the atomic multicast primitive that supports them.

This paper is organized as follows: Section 2 describes the generalCOPLA architecture. Section 3 presents

the consistency protocols. Section 4 presents the atomic multicast primitive that supports the protocols.

Section 5 presents some optimizations to the basic protocols. Section 6 discusses related work that studies

database replication based on atomic broadcast primitives. Section 7 concludes this paper.

2 COPLA System Architecture

COPLA is a middleware tool that provides transparent access to a replicated repository of persistent ob-

jects. Replicas can be located on different nodes of a cluster, of a local area network, or spread across a wide

are network spanning different geographic locations. To support a diversity of environments and workloads,

COPLA provides a number of replica consistency protocols.

The main components of theCOPLA architecture are depicted in Figure 1. The upper layer is a “client

interface” module, that provides the functionality used by theCOPLA applications programmer. The pro-

grammer has an object-oriented view of the persistent and distributed data: it uses a subset of Object Query

Language [7] to obtain references to distributed objects. Objects can be concurrently accessed by different

clients in the context of distributed transactions.

For fault-tolerance, and to improve locality of read-only transactions, an object database may be replicated

at different locations. Several consistency protocols are supported byCOPLA; the choice of the best protocol

depends on the topology of the network and of the application’s workload. To maintain the user interface

code independent of the actual protocol being used, all protocols adhere to a common protocol interface

(labeled CP-API in the figure). This allowsCOPLA to be configured according to the characteristics of the

environment where it runs.

The uniform data store (UDS) module (developed by the Universidad Pública de Navarra) is responsible

2

Client application

Client interface

Consistency protocols

Uniform Data
Store (UDS)

COPLA

CP-API

UDS-API PER-API

Communications
module
(atomic

broadcast)

Figure 1. COPLA architecture

for storing the state of the persistent objects in an off-the-shelf relational database management system

(RDBMS). To perform this task, the UDS exports an interface, the UDS-API, through which objects can be

stored and retrieved. It also converts all the queries posed by the application into normalized SQL queries.

Finally, the UDS is used to store in a persistent way the control information required by the consistency

protocols. This control information is stored and accessed through an dedicated interface, the PER-API.

Architectural challenges The GLOBDATA project is characterized by a unique combination of different

requirements, that make the design of the consistency protocols a challenging task. Namely, theGLOBDATA

aims to satisfy the following requirements:

• Large-scale: the consistency protocols must support replication of objects in a geographically dis-

persed system, in which the nodes communicate through the Internet. This prevents the use of

protocols that make used of specific network properties (such as the low-latency or network-order

preservation properties of local-area networks [18]).

• RDBMS independence: a variety of commercial databases should be supported as the underlying data

storage technology. This prevents the use of solutions that require adaptations to the database kernel.

• Protocol interchangeability: COPLA must be flexible enough to adapt to changing environment con-

ditions, like the scale of the system, availability of different communication facilities, and changes in

the application’s workload. Therefore it should allow the use of distinct consistency protocols, that

can perform differently in several scenarios.

3

• Object-orientation:even if COPLA maps objects into a relational model, this operation must be iso-

lated from the consistency protocols. In this way, the consistency algorithms are not tied to any

specific object representation.

3 Strong Consistency Protocols

In GLOBDATA , the application programmer may trade fault-tolerance for performance. Therefore, a suite

of protocols with different behavior in the presence of faults is being developed by different teams. Another

project’s partner, the ITI, is developing a suite of protocols based on the notion of object ownership [15]:

Each node is the manager for the objects created in it, and is responsible for managing concurrent accesses to

those objects. On the other hand, the DIALNP team at Universidade de Lisboa, is developing two protocols

that enforce strong consistency even in the presence of faults. In fact, the two protocols reported here can

also be configured to trade reliability for performance, by implementing a deferred updates scheme. The

strong consistency protocols rely extensively on the availability of an uniform atomic broadcast primitive.

The implementation of this primitive will be addressed later in the paper.

3.1 Interaction Among Components

We now describe the strong consistency protocols designed forCOPLA. Both protocols cooperate with

the Uniform Data Store to obtain information about which objects are read or updated by each transaction.

This information, in the form of a list of unique object identifiers (OIDs), allows the protocols to have fine-

grain information about which transaction conflict with each other. Since the consistency protocols only

manipulate OIDs, they remain independent from the representation of objects in the database.

The COPLA transactional model In COPLA, the execution of a transaction includes the following steps:

1. The programmer signals the system that a transaction is about to start.

2. The programmer makes a query to the database, using a subset of OQL. This query returns a collection

of objects.

3. The returned objects are manipulated by the programmer using the functions exported by the client

interface. These functions allow the application to update the values of object’s attributes, and to read

new objects through object relations (object attributes that are references to other objects).

4. Steps 2-3 are repeated until the transaction is completed.

5. The programmer requests the system to commit the transaction.

4

Interaction with the consistency protocols The common protocol interface basically exports two func-

tions: a function that must be called by the application every time new objects are read by a transaction, and

a function that must be called in order to commit the transaction.

The first function, that we callUDSAccess(), serves two main purposes: to make sure that the local

copies of the objects are up-to-date (when using deferred updates, the most recent version may not be

available locally); and to extract the state of the objects by calling the UDS (the access to the underlying

database is not performed by the consistency protocol itself; it is a function of the UDS component). It

should be noted that in the actual implementation this function is unfolded in a collection of similar functions

covering different requests (attribute read, relationship read, query, etc.). For clarity of exposition, we make

no distinction among these functions in the paper.

The second function, calledcommit(), is used by the application to commit the transaction. In response to

this request the consistency protocols module has to coordinate with its remote peers to serialize conflicting

transactions and to decide whether it is safe to commit the transaction or if it has to be aborted due to some

conflict. In order to execute this phase, the consistency protocol request the UDS module to provide the

list of all objects updated by the current transaction. Additionally, the UDS also provides the consistency

protocols with an opaque structure containing the state of the updated objects. It is the responsibility of the

consistency protocol to propagate these updates to the remote nodes.

Replication strategies Using the classification of database replication strategies introduced in [20], the

strong consistency protocols ofCOPLA can be classified as belonging to the “update everywhere constant

interaction” class. They are “update everywhere” because they perform the updates to the data items in

all replicas of the system. This approach was chosen because it is easier to deal with failures (since all

nodes maintain their own copy of the data) and it does not create bottleneck points like the primary copy

approach. They are “constant interaction” because the number of messages exchanged by transaction is

fixed, independently of the number of operations in the transaction. Given that the cost of communication

in most GLOBDATA configurations is expected to be high, this approach is much more efficient than a

linear interaction approach. The protocols described below explore the third degree of freedom: the way

transactions terminate (voting or non-voting).

Interaction with the atomic broadcast primitive An atomic broadcast primitive broadcasts messages

among a group of servers, guaranteeing atomic and ordered delivery of messages. Specifically, letm and

m′ be two messages sent by atomic broadcast to a group of serversg. Atomicdelivery guarantees that if a

member ofg deliversm (resp.m′), then all correct members ofg deliverm (resp.m′). Ordereddelivery

guarantees that if any two members ofg deliver m andm′, they deliver them in the same order. These

two properties are used by both consistency protocols: the order property is used by the conflict resolution

mechanism, and atomic delivery is used to simplify atomic commitment of transactions.

5

3.2 The NonVoting Protocol

This protocol is a modification of the one described in [17], altered to use a version scheme for concur-

rency control [6], and adapted to theCOPLA transactional model.

The protocol uses the following control information for each object: a version number and a flag that

states whether or not the local copy of this object is up-to-date. If an object is out-of-date, the identifier of

the node that has the latest version of the object is also kept. Note that in the basic protocol, all replicas are

up-to-date when a transaction commits. Only in the deferred updates mode, it is possible that some replicas

remain temporarily out of date. All this information is maintained in a consistency table, which is stored in

persistent storage, and is updated in the context of the same transaction that alters data (i.e., the consistency

information is updated only if the transaction commits).

When an object is created, its version number is set to zero. Each time a transaction updates an object,

and that transaction commits, the object’s version number is incremented by one. This mechanism keeps

version numbers synchronized across replicas, since the total order ensured by atomic broadcast causes all

replicas to process transactions in the same order.

When enforcing serializability, two kinds of conflicts must be considered by the protocol: read/write

conflicts and write/write conflicts. Read/write conflicts occur when one transactions reads an object, and

another concurrent transactions writes on that same object. Write/write conflicts occur when two concurrent

transactions write on the same object. InGLOBDATA , all objects are read before they are written (as shown

above in theCOPLA transactional model), so a write/write conflict is also a read/write conflict. Considering

this definitions, in the version number concurrency control scheme, conflicting transactions are defined as

follows:

Two transactionst andt′ conflict if t′ has read an object with versionvo and whent′ is about

to commit, objecto’s version number in the local database,v′o, is higher thanvo. That means

that t′ has read data that was later modified (by a transactiont that modifiedo and committed

beforet′, thus increasingo’s version number), and thereforet′ should be aborted.

The general outline of the non-voting algorithm is now presented:

1. All the transaction’s operations are executed locally on the node where the transaction was initiated

(this node is called the delegate node).

2. When the application requests a commit, the set of read objects and its version numbers, and the set

of written objects is sent to all nodes using the atomic broadcast primitive.

3. When a transaction is delivered by the atomic broadcast protocol, all servers verify if the received

transaction does not conflict with other local running transactions. There is no conflict if the versions

of the objects read by the arriving transaction are greater or equal to the versions of those objects

6

• UDSAccess(t,l):

1. Add the listl of objects to list of objects read by transactiont.

• commit(t):

1. Obtain from the UDS the list of objects read (RSt) and its version numbers, and the list of objects

written (WSt) by this transaction.

2. Send< t, RSt, WSt > through the atomic broadcast primitive.

3. When the message containingt is delivered by the atomic broadcast:

(a) If t does conflict with some other transaction

i. Abort.

(b) else (consistent transaction)

i. Abort all transactions conflicting witht

ii. Commit the transaction.

Figure 2. Nonvoting protocol

present in the local database. If no conflict is detected, then the transaction is committed, otherwise

it is aborted. Since this procedure is deterministic and all nodes, including the delegate node, receive

transactions by the same order, all nodes reach the same decision about the outcome of the transaction.

The delegate node can now inform the client application about the final outcome of the transaction.

Note that the last step is executed byall nodes, including the one that initiated the transaction.

Depicted in Figure 2 is a more detailed description of the algorithm. It is divided in two functions,

corresponding to the interface previously described. Both functions accept the parametert, the transaction

to act upon.UDSAccess() also accepts a parameter,l, which is the list of objects thatt has read from the

UDS. Note that step 3 of thecommit() function is executed by all nodes, including the delegate node.

The algorithm uses the order given by atomic broadcast for serializing conflicting transactions: if a trans-

action is delivered and is consistent, it has priority over other running transactions. This implies that if there

are two conflicting transactions,t1 andt2, andt1 is delivered beforet2, thent1 will proceed, andt2 will be

marked as conflicting (in step 3(a)), because it has read stale data.

The decision is taken in each node independently, but all nodes will reach the same decision, since it

depends solely on the order of message delivery (which is guaranteed to be consistent at all replicas by the

atomic broadcast protocol). When a commit is decided, the version number of the objects written by this

transaction are incremented, and the UDS transaction is committed.

Note that to improve performance, local running transactions that conflict with a consistent transaction

are aborted, in step 3(b). There is a conflict when the running transaction has read objects that the arriving

7

transaction has written. This would cause the transaction to carry old versions of read objects on its read set,

which would cause it to be aborted later on in step 3(a). This way an atomic broadcast message is spared2.

Aborting a transaction does not involve any special step. In this case, thecommit() function is never

called, and all that has to be done is to release the local resources associated with that transaction.

3.3 The Voting Protocol

This protocol is an adaptation of the protocol described in [13] adapted to theCOPLA transactional model.

It consists in two phases, a write set broadcast phase, and a voting phase.

The general outline of the algorithm is as follows:

1. All the transaction’s operations are executed locally on the delegate node, obtaining (local) read locks

on read objects (note that, in order to be written, an object must be previously read).

2. When the application requests a commit, the set of written objects is sent to all nodes using atomic

broadcast.

3. When the write set of a transactiont is delivered by atomic broadcast, all nodes try to obtain local

write locks on all objects in the set. If there is a transaction that holds a write lock on any object of the

write set oft, t is placed on hold until that write lock is relinquished. Transactions holding read locks

on any object of the write set oft are aborted (sending an abort message through atomic broadcast).

When the delegate node has obtained all write locks, sends a commit message to all servers, through

atomic broadcast.

4. Upon the reception of a confirmation message, a node applies the transaction’s writes to the local

database and subsequently releases all locks held on behalf of that transaction. Upon the reception of

an abort message, the delegate node aborts the transaction an releases all its locks (other nodes ignore

that message).

A detailed description of the algorithm is shown in Figure 3. The algorithm uses the order given by

atomic broadcast to serialize conflicting transactions. The final transaction order is given by the order of the

< t, WSt > messages. Conflict detection is done using locks.

Write/write conflicts, that occur when two concurrent transactions try to write over the same object,

are detected by the lock system (two transactions try to obtain a write lock on the same object). Since

write locks are obtained upon reception of< t, WSt >, the order of these messages determines the lock

acquisition order. As seen in Figure 3, if a transactiont obtains a write lock, it will force a later transaction

t′ to wait when it tries to obtain its lock. Ift commits it will forcet′ to abort.
2This optimization may not be effective in all cases : if the running transaction has already sent its message, then there is no

saving, the transaction is merely aborted sooner. When its message arrives, it will be discarded.

8

• UDSAccess(t,l):

1. For each object in the listl obtain a read lock. If any of those objects is write-locked,t is place on

hold until that object’s write lock is released.

• commit(t):

1. Obtain from the UDS the list of objects written (WSt) by t.

2. Send< t, WSt > through the atomic broadcast primitive.

3. When the message containingt is delivered by atomic broadcast:

(a) For each objecto in WSt, try to obtain a write lock on it, executing the following steps atomi-

cally:

i. If there is one or more read locks ono, everyt′ that has that read lock is aborted (by sending

anat′ message using atomic broadcast), and the write lock ono is granted tot.

ii. If there is a write lock ono, or all the read locks ono are from transactionstrecv whose

message< trecv, WStrecv > has already been delivered,t will be placed on hold until those

write locks are released.

iii. If there is no other lock ono, grant the lock tot.

(b) If this node is the delegate node fort, sendct by atomic broadcast.

4. When act message is delivered: committ, writing all its updates in the database and releasing all

locks held byt. All transactionst′waiting to obtain write locks on an object written byt are aborted

(aat′ message is sent through atomic broadcast).

5. When aat is delivered: Ift is a local transaction the message is ignored, otherwise abortt, releasing

all its locks.

Figure 3. Voting protocol

9

Read/write conflicts, that occur when two concurrent transactions access the same object, one for reading

and the other for writing, are solved by giving priority to writing transactions. When a< t, WSt > message

is delivered, write locks are obtained, causing transactions that have read locks on objects inWSt to abort.

This rule does not apply to transactions whose write set has already been delivered (step 3(a)ii): in this case

t will be placed on hold until the decision is taken regarding the transaction(s) that own the read lock.

All nodes obtain the same write locks in the same order, because the order of the< t, WSt > messages

is the same in all nodes, and the lock procedure is deterministic. As such, all nodes will be able to respect

the decision issued by the delegate node.

Optimization This protocol can be further improved, to avoid aborting unnecessary number of trans-

actions. In the lock acquisition phase (after< t, WSt > is delivered), instead of immediately aborting

transactions that hold read locks on objects inWSt, they can be placed on an alternative state, calledexe-

cuting abort. This is to consider situations wheret is latter aborted, which means that the other transactions

that interfered witht were needlessly aborted.

Transactions in theexecuting abort state can proceed executing, but cannot commit. If they attempt to,

they will be placed on hold. Ift commits, then all transactions inexecuting abort because oft will be

aborted. Ift aborts, then the transactions inexecuting abort will return to normal execution state (if there

is no other transactiont′ that is placingt in executing abort).

Read-only transactions that try to commit and are inexecuting abort state do not need to be put on hold

- they can commit immediately. The final serialization order is as these transactions executed before the

transaction that placed them inexecuting abort.

4 The Atomic Broadcast Protocol

The two strong consistency protocols implemented in theCOPLA middleware make extensive use of

the properties of an atomic multicast protocol. To efficiently support the consistency protocols, a protocol

designed for large-scale operation is being implemented.

The protocol is an adaptation of the hybrid total order protocol presented in [19]. The hybrid protocol

combines two very known solutions for total order: sequencer based and logical clocks. A process may be

active or passive: if it is active then it orders messages for itself and others; if it is passive then it has an

active process that orders his messages. If more that one active process exists, then the order is established

using logical clocks. The processes can change is role depending on the number of messages transmitted and

the network delay between themselves and the other processes. These characteristics optimize the protocol

behavior in large-scale networks.

Unfortunately, the original protocol as presented in [19] supports only a non-uniform version of atomic

multicast, i.e., the order of messages delivered to crashed processes may differ from the order of messages

delivered to correct processes. In the database context, this may lead to the state preserved in the database

10

of a crashed process to be inconsistent. Therefore, inCOPLA, one needs an uniform total order protocol, i.e.

a protocol that ensures that if two messages are delivered by a given order to a process (even if this process

crashes), they are delivered in that order to all correct processes.

Several alternatives to augment the hybrid protocol with uniform delivery have been implemented and

are currently under evaluation. The first alternative consists in adding an additional stability phase to the

original hybrid protocol. The second alternative is to change the underlying reliable broadcast protocol to

provide terminating uniform delivery of every message. The third alternative is to use two protocols in

parallel: the original hybrid protocol to establish a tentative order and another consensus based protocol to

establish a definitive order. These alternatives are being implemented using theAppia [14] framework and

their performance is being studied.

Early analysis shows that the protocol that performs best is a combination of the previous alternatives.

Passive nodes select a sequencer just as in the original hybrid protocol. Sequencers are responsible for

providing an uniform total order for the messages sent by passive nodes and for their own messages. They

do so by applying a symmetric total order protocol based on an underlying terminating uniform reliable

broadcast layer.

The protocol also supports the optimistic delivery of (tentative) total order indications [8, 18]. Given that

the order established by the (non-uniform) total order protocol is the same as the final uniform total order in

most cases (these two orders only differ when crashes occur at particular points in the protocol execution),

this order can be provided to the consistency layer as a tentative ordering information. The consistency

protocols may optimistically perform some tasks that are later committed when the final order is delivered.

5 Optimizations to the Basic Protocols

The basic protocols described in Section 3 can be optimized in two different ways. One consists in

delaying the propagation of updates, thedeferred updatesmode. Other consists in exploiting the optimistic

delivery of the atomic multicast algorithm.

5.1 Deferred Updates

Both algorithms presented before can be configured to operate on a mode calleddeferred updates. This

mode consists in postponing the transfer of updates until such data is required by a remote transaction, trad-

ing fault-tolerance for performance. Note that, when using deferred updates, the outcome of a transaction is

no longer immediately propagated to all replicas: it is stored only at the delegate node. If this node crashes,

transactions that access this data must wait for the delegate node to recover. On the other hand, network

communication is saved because updates are only propagated when needed.

The changes to the protocol required to implement thedeferred updatesmode are encapsulated in the

getNewVersions(t,l) function, which is depicted in Figure 4. In both protocols, the function is called after

11

• For each OID inl:

1. Check if the object’s copy in the local database is up-to-date.

2. If the object is out-of-date, get the latest version from the node that holds it.

Figure 4. getNewVersions(t, l)

step one, i.e., it becomes step two ofUDSAccess().

Associated with each OID, there is a field, calledowner, that contains the identifier of the node holding

the latest version of that object’s data. If that field is empty, then the current node holds the latest version.

When deferred updates mode is not used, modified data is written to the database at the end of the commit

procedure. This step is modified to implement deferred updates: only the delegate node writes the altered

data on its database, setting the owner field to empty. All the other nodes write the identifier of the delegate

node in their databases. The only information that is sent across the network is merely a list of changed

OIDs (instead of that list plus the data itself).

5.2 Exploiting Optimistic Atomic Delivery

As described above, the atomic broadcast primitive developed in the project has the possibility of deliver-

ing a message optimistically (opt-deliver), i.e., the message is delivered in a tentative order, which is likely

to be the same as the final order (u-deliver). This can be exploited by both consistency protocols. The ten-

tative order allows the protocols to send the transaction’s updates to the database earlier. Instead of waiting

for the final uniform order to perform the writes, they are sent to the database as soon as the tentative order

is know. When the final order arrives, all that is required is to commit the transaction. This hides the cost of

witting data behind the cost of uniform delivery, effectively doing both things in parallel.

Non-voting protocol Upon reception of an opt-deliver message, all steps in thecommit() function are

executed, with the following modifications: in step 3(a), conflicting transactions are not aborted, but placed

on hold (transactions on hold can execute normally, but are suspended when they request a commit, and can

only proceed when they return to normal state); in step 3(b-ii), the data is sent to the UDS, but the transaction

is not committed.

When the message is u-delivered, and its order is the same as the tentative one, all transactions marked on

hold on behalf of the current one are aborted, and the transaction is committed. If the order is not the same,

then the open UDS transaction is aborted, all transactions placed on hold on behalf of this one are returned

to normal state, and the message is reprocessed as if it arrived at that moment.

12

Voting protocol (This modification is for the optimized version of the protocol) Upon reception of an

opt-deliver message for transactiont, all steps in thecommit() function are executed, with the following

modifications: in step 3(b), thect message is not sent; instead the transaction is placed in a waiting state, and

the updates are sent to the database. When the same messaget is u-delivered, if the order was maintained,

the transaction is placed in normal state, thect message is sent, and the rest of the procedure is the same. If

the order differs, then all transactions waiting for the final message ordering opt-delivered beforet, and not

yet u-delivered, are aborted.

6 Related Work

In the database literature, one can find different alternatives to enforce replica consistency. Some au-

thors [10, 9] suggested voting schemes, where a certain number ofvotesis given to each node, and a trans-

action can only proceed if there are enough replicas to form a sufficientquorum. This quorum must be

defined in such a way that at least one replica detects conflicting transactions. The scalability problems of

this technique (and of other related replication techniques) are identified in [11]. One of the main problem

consists on the large number of deadlocks that may occur in the face of concurrent access to the same data:

the number of deadlocks grows in the proportion ofn3 for n nodes. It has been suggested that a technique

to circumvent this problem is to implement some sort of master-slave approach: each object belongs to a

master node, and to avoid reconciliation problems, nodes that do not own an object make tentative updates,

and then contact that object’s master node to confirm those updates.

An alternative approach followed inCOPLA consists in using an active replication scheme based on the

use of efficient atomic multicast primitives. Systems such as [17, 12, 16], use the message order provided

by atomic broadcast to aid in the serialization of conflicting transactions. An example of such a system

is the Dragon [2] project, that uses extensively replicated algorithms that take advantage of the ordering

properties of atomic broadcast in order to avoid deadlocks [20, 21, 13]. However, unlike our approach,

the Dragon protocols are implemented at the database-kernel level, and cannot be used with off-the-shelf

database systems.

Concurrently with our work, the CNDS group [3] has developed a system [4, 5] similar toGLOBDATA .

Their approach also separates the consistency protocol from the database module. However, unlike our

protocols, their system does not provide fine grain conflict detection. InCOPLA, because a node knows

the read and write set of the transactions that is executing, it can: a) Detect if a given query (read-only

transaction) can be applied immediately (i.e., if it does not conflict with pending update transactions); b)

abort transactions earlier, saving an expensive atomic broadcast message.

13

7 Conclusion

This paper presented the strong consistency protocols supported by theCOPLA middleware, a tool that

provides transactional access to persistent transparently replicated objects. These protocols are based on

the use of atomic broadcast primitives to serialize conflicting transaction and to enforce the consistency

in the transaction commit phase. The protocols satisfy a set of challenging requirements imposed by the

GLOBDATA architecture, namely: large-scale operation, RDBMS independence, protocol interchangeability

and support for an object-oriented access to data. The paper also introduced the atomic broadcast algorithm

that has been designed to support the execution of the consistency protocols.

Currently we are completing the implementation of both consistency protocols and the atomic broadcast

protocol. We then plan to evaluate the impact of different loads on both algorithms under varying conditions,

as well as the performance of the atomic broadcast primitive in the those varying conditions.

References

[1] http://globdata.iti.es/.

[2] http://www.inf.ethz.ch/department/IS/iks/research/

dragon.html.

[3] Center for Networking and Distributed Systems, John Hopkins University, Baltimore, USA.

[4] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu. Practical wide area database replication. Tech-

nical Report CNDS-2002-1, Center for Networking and Distributed Systems, Feb. 2002.

[5] Y. Amir and C. Tutu. From total order to database replication. Technical Report CNDS-2001-6, Center for

Networking and Distributed Systems, Nov. 2001. Accepted to the IEEE International Conference on Distributed

Computing Systems (ICDCS), Vienna, Austria, July 2002.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems.

Addison-Wesley, 1987.

[7] R. G. G. Cattell.The Object Data Standard: ODMG3.0. Morgan Kauffmann Publishers, 2000.

[8] P. Felber and A. Schiper. Optimistic active replication. InProceedings of the 21st International Conference on

Distributed Computing Systems (ICDCS’2001), Phoenix, Arizona, USA, Apr. 2001. IEEE Computer Society.

[9] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system.Journal of the ACM, 32(4):841–

860, Oct. 1985.

[10] D. Gifford. Weighted voting for replicated data. InProceedings of the 7th ACM Symposium on Operating System

Principles, pages 150–162, Pacific Grove, California, USA, Dec. 1979.

[11] J. Gray, P. Helland, P. O’Neal, and D. Shasha. The dangers of replication and a solution. InProceedings of

the 1996 ACM SIGMOD International Conference on Management of Data, pages 173–182, Montreal, Quebec,

Canada, June 1996.

[12] J. Holliday, D. Agrawal, and A. El Abbadi. Using multicast communication to reduce deadlock in replicated

databases. InProceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000), Nürnberg,

Germany, Oct. 2000.

14

[13] B. Kemme and G. Alonso. A suite of database replication protocols based on group communication primitives.

In Proceedings of the 18th International Conference on Distributed Computing Systems (ICDCS), Amsterdam,

The Netherlands, May 1998.

[14] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting multiple coordinated

channels. InProceedings of the 21st International Conference on Distributed Computing Systems, pages 707–

710, Phoenix, Arizona, USA, Apr. 2001.

[15] F. D. Muñoz, L. Irún, P. Gald́amez, J. M. Bernab́eu, J. Bataller, and M. C. Bañuls. Globdata: Consistency

protocols for replicated databases. InProc. of the IEEE YUFORIC’2001, pages 97–104, Valencia, Spain, Nov.

2001. ISBN 84-9705-097-5.

[16] M. Patĩno Mart́ınez, R. Jiḿenez-Peris, B. Kemme, and G. Alonso. Scalable replication in database clusters. In

Proceedings of the 14th International Symposium on Distributed Computing (DISC), Toledo, Spain, Oct. 2000.

[17] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broadcast in replicated databases. InProceedings

of EuroPar (EuroPar’98), Southampton, UK, Sept. 1998.

[18] F. Pedone and A. Schiper. Optimistic atomic broadcast. InProceedings of the 12th International Symposium on

Distributed Computing (DISC’98), Andros, Greece, Sept. 1998.

[19] L. Rodrigues, H. Fonseca, and P. Verı́ssimo. Totally ordered multicast in large-scale systems. InProceedings of

the 16th International Conference on Distributed Computing Systems, pages 503–510, Hong Kong, May 1996.

IEEE.

[20] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database replication techniques: a three

parameter classification. InProc. of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS2000),

Nrnberg, Germany, Oct. 2000.

[21] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication in databases and

distributed systems. InProc. of the 20th International Conference on Distributed Computing Systems (ICDCS),

Taipei, Taiwan, Republic of China, Apr. 2000.

15

