
FTRMI: Fault-Tolerant Transparent RMI

Diogo Reis and Hugo Miranda

University of Lisbon
LaSIGE

SAC, March 28th, 2012



Remote Procedure Calls
What?

A simple approach for distributed computing

Hides the network from the application (client and server)
programmer

Client side
// Do something

x=f(y);

// Do more

Server side
int f(int y) {
// Do something

return z;

}



Remote Procedure Calls
Who?

Implementation examples

Procedural ONC (SUN) RPCs, Web Services
OO CORBA, JRMI



Remote Procedure Calls
How?

JRMI as an example



The Availability Limitation of RPC’s

What if server fails?

Server name is well-known
Stubs cannot reroute remote calls to alternative servers

Server state would not be available at the replica



Approaches for State-full Consistent Replication of Servers

Middleware Aware

Client and server stacks cooperate to support replication

Disadvantages
Clients and servers use non-standard protocol

Must run special version of the middleware

Examples

Jgroup/ARM
Filterfresh
FT-CORBA
. . .



Approaches for State-full Consistent Replication of Servers

Middleware Unaware

Replication is hidden from the application and the middleware

“Proxies” capture and (possibly) interpret the client/server
traffic

Disadvantages

Respecting the protocols raises limitations on the operations
that can be provided

Examples
Aroma

Snoops traffic at client and server side

FTRMI



Fault-Tolerant RMI (FTRMI)
Overview

Proxy placed on the server side

Between the standard library class and server skeleton
Class with the same name and API of the original JRMI

sun.rmi.server.UnicastServerRef

-Xbootclasspath/p

No code change at the client or server



FTRMI Process



FTRMI Implementation

Incoming calls

Intercept remote calls before they are delivered to the server

Use Linux libcap to retrieve call’s TCP/IP connection
information

Sequence and Ack number
IP origin and destination addresses

Deliver the call and TCP data to the Appia Group
Communication Service

Appia enforces the atomic broadcast properties



FTRMI Implementation
Calls received from clients



FTRMI Implementation

Calls received from Appia

Forward the call to skeleton

Intercept the reply

Prepare a TCP segment that matches the TCP expected reply
at the client

Send the TCP segment

Using raw sockets



FTRMI Implementation
Handling calls received from Appia



FTRMI Implementation

Client Transparency

Client’s TCP will receive multiple copies of the reply

Consider all but the first as duplicates

Discard



FTRMI Implementation
Multiple reply handling at the clients



Fault Tolerance

Appia protocols

Provide atomic broadcast
Support for a distributed state machine
Support for state synchronisation when servers recover

TCP
Duplicate detection

Case where server that received the request fails



Evaluation
Performance

FTRMI experimented with 3 distinct total order protocols
provided by Appia

FTRMI-1 Regular, Coordinator-based Total Order
FTRMI-2 Regular, Causal Order-based Total Order
FTRMI-U Uniform Total Order

And compared with 2 approaches

JRMI Off-the-shelf, not replicated JRMI
Jgroup/ARM middleware-aware framework

Clients and servers share a GCS

Remote procedure

int procedure(String s)



Evaluation
Latency

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

s=2 c=2 s=2 c=4 s=3 c=3 s=3 c=6 s=4 c=4 s=4 c=8

a
v
e
ra

g
e
 t

im
e
 (

m
s)

s - servers, c - clients

JRMI
FTRMI-1
FTRMI-2
FTRMI-U

Jgroup/ARM

arguments size: 2000 bytes



Performance Results
Summary

JRMI always presents the best performance results

FTRMI scales well

Server-Server 4×–10× more than Client-Server traffic

Some protocols don’t have a linear relation between latency
and traffic



Conclusions & Future Work

FTRMI
Transparent replication of JRMI servers

without code changes at the client or the server
No need to use specialised libraries at the client side

Encouraging performance results

Future Work

Extend fault tolerance to the JRMI Registry
Experiment this approach in other RPC frameworks


