Motivation	Related Work	Pampa	Conclusions

Removing Probabilities to Improve Efficiency in **Broadcast Algorithms**

Hugo Miranda¹ Simone Leggio² Luís Rodrigues¹ Kimmo Raatikainen²

¹University of Lisbon

²University of Helsinki

September 11th, 2007

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Broadcast algorithms

Goal Best effort delivery of a message to the nodes in a multi-hop MANET

Applications Resource location

- Routing protocols (e.g. DSR, AODV)
- Reputation systems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Desirable features

- The usual for MANETs
 - Fully decentralised
 - Cope well with:
 - Node movement/disconnection/addition
 - Variable network conditions
 - Low power consumption
 - Low bandwidth consumption

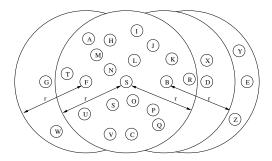
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Flooding

- A popular broadcast algorithm
- Every node receiving a message for the first time retransmit it.
- Highly inefficient (broadcast storm)
 - Too many useless retransmissions
 - Consumes battery at every node
 - High probability of collisions

Reducing resource consumption

- Alternatives to flooding should:
 - Limit as much as possible the number of transmitters
 - Ensure message propagation
 - Specially in varying network densities
- Three classes of alternatives
 - Probabilistic
 - Counter-based
 - Distance-based


Motivation

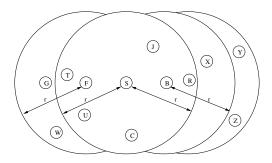
Related Work

Pampa

Conclusions

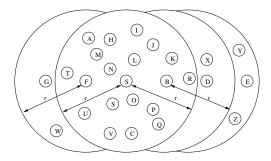
Probabilistic Algorithms [Haas:02]

- Nodes retransmit with a probability 0
- The number of retransmissions is proportional to the number of neighbours
 - doesn't adapt well to different node densities
- Mitigation: counter-based algorithms

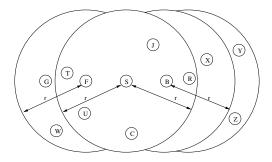

Motivation

Related Work

Pampa

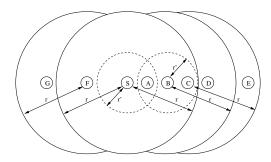

Conclusions

Probabilistic Algorithms [Haas:02]


- Nodes retransmit with a probability 0
- The number of retransmissions is proportional to the number of neighbours
 - doesn't adapt well to different node densities
- Mitigation: counter-based algorithms

Counter-based [Haas:02, Tseng:02, Huang:06]

- After receiving the first copy
 - Nodes wait a random time
 - Retransmit if the number of copies received is below a threshold *n*
- Adapts well to different densities
- Non-optimal selection of the nodes that retransmit


Counter-based [Haas:02, Tseng:02, Huang:06]

- After receiving the first copy
 - Nodes wait a random time
 - Retransmit if the number of copies received is below a threshold *n*
- Adapts well to different densities
- Non-optimal selection of the nodes that retransmit
 □ > (⊕ > (

・ロト ・個ト ・ヨト ・ヨト … ヨ

Distance-based approaches [Tseng:02]

- After receiving the first copy
 - Nodes wait a random time
 - Retransmit if the signal strength of any copy is below a threshold
- The higher the signal strength, the lower the distance
 - Discards transmissions with a negligible additional coverage

• Related work exhibits a pattern:

nodes are selected at random

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

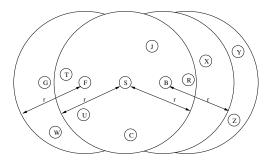
Probabilistic algorithms An explicit **random** number generator

• Related work exhibits a pattern:

nodes are selected at random

Probabilistic algorithms An explicit **random** number generator Counter-based algorithms The one that expires the **random** timer first

• Related work exhibits a pattern:

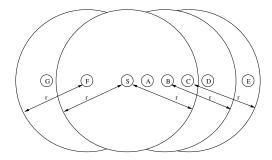

nodes are selected at random

- Probabilistic algorithms An explicit random number generator
- Counter-based algorithms The one that expires the **random** timer first
- Distance-aware algorithms The one that expires the **random** timer first and is above some distance

• Can we do better?

Pampa

Improving node selection...

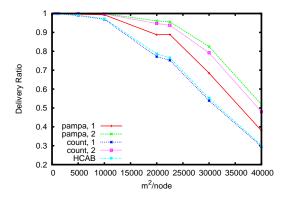

- A retransmission adds from 0 to 61% to the coverage of a previous transmission [Tseng:02]
- Which neighbours should retransmit?
 - The more distant the retransmission is from the source, the better

Improving Node Selection

PAMPA Power-Aware Message Propagation Algorithm

- After receiving the first copy
 - Nodes wait a time proportional to the signal strength
 - Retransmit if the number of copies received is below a threshold
- Rank nodes for retransmission according to their distance to the source

Motivation	Related Work	Pampa	Conclusions
PAMPA			

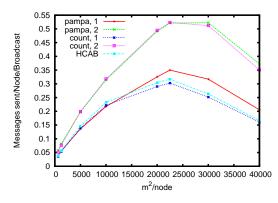

- $\bullet\,$ Higher distance to the source \Rightarrow lower signal strength $\Rightarrow\,$ smaller wait time
 - Nodes to retransmit will be those that provide higher contribution to coverage

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Listens to the number of retransmissions
 - Adapts well to different densities

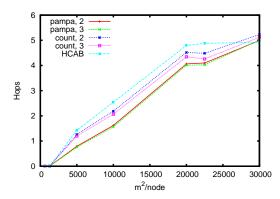
Pampa

Evaluation - coverage



- Simulations in ns-2, Two Ray Ground, 100 nodes
- Pampa vs Counter-based (for the same thresholds)
 - Doesn't matter which if nodes are close
 - Pampa has a higher delivery ratio
 - More evident in sparser networks

Pampa


- 31

Evaluation - Number of transmissions

- Number of transmissions/broadcast/node
- Pampa requires as much as the remaining when coverage is comparable
- A little bit more when coverage is higher

Evaluation - Number of Hops

- Number of hops travelled by a message before being delivered to each node
- Smaller in Pampa
 - Each retransmission covers more nodes

Motivation	Related Work	Pampa	Evaluation	Conclusions
Conclusions				

- Broadcasting appears to be unavoidable in MANETs
 - Flooding wastes resources
- Existing alternatives to flooding
 - Don't take full advantage of the location of the nodes
- PAMPA
 - Uses RSSI to make nodes more distant to the source to retransmit first
 - Prevents nodes with a negligible contribution from retransmitting
- Evaluation
 - Improves coverage in sparse networks
 - Reduces the number of hops required to deliver the message