Gossip-based data distribution in mobile ad hoc networks

Hugo Miranda

Universidade de Lisboa

October 10th, 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mobile Ad Hoc Networks

- Infrastructure-less wireless networks
- Fully decentralised
- Composed by devices with limited capabilities
- Examples:
 - Sensors
 - Personal Digital Assistants (PDAs)
 - Laptops
- Characterised by an high failure rate
 - Devices fail or are disconnected
 - Intermittent connectivity due to node movement and interference

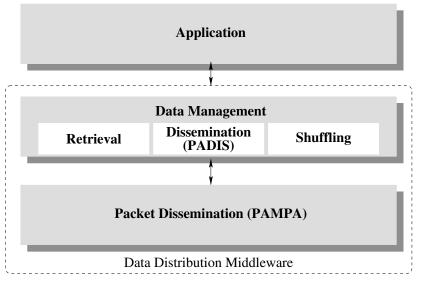
- Cooperative applications:
 - in remote or hostile locations
 - Search-and-rescue operations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Military operations
- Field surveys
- in ad hoc gatherings of users
 - Meetings
 - Airports
 - Shopping malls

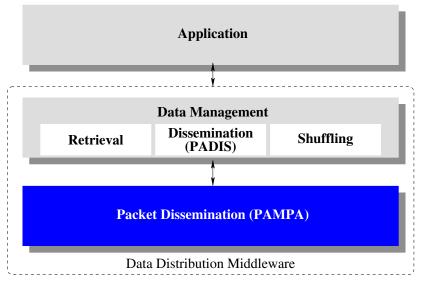
• How to increase data availability in MANETs?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

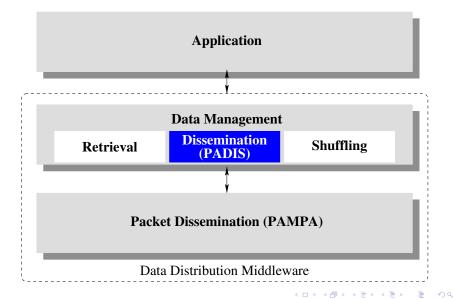

- posts to a white board
- SIP/SLP records
- data collected in field surveys

- Replication
 - Nodes may fail or become disconnected
- Save resources
 - Moderate number of replicas and messages
- Geographical distribution of the replicas
 - Tolerates localised interference
 - Reduces latency
 - Saves bandwidth
- Broad applicability
 - Nodes are not aware of their location
 - Nodes cannot anticipate the data they will require
 - Distribution should be stable even with node movement

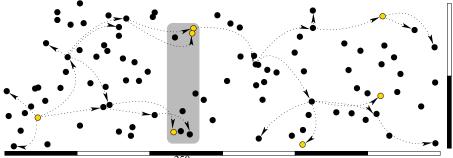
Related Work


Protocol	Node Movement	Location Awareness	Access Prediction	Replica Refresh/ Leveraging
Simple Search	•			
Rumour Routing				
*-SAF	•		•	0
Aut. Gossipping	•		•	0
Non-Unif				
*-DAFN	•		•	0
*-DCG	•		•	0
7DS	•			
Sailhan et al.	•			
Double rulings		•		
GLS	•	•		0
CacheData	•			
DCS	•	•		•
CachePath	•			
R-DCS	•	•		•

•: feature of the algorithm o: implicitly provided


Contributions of the thesis

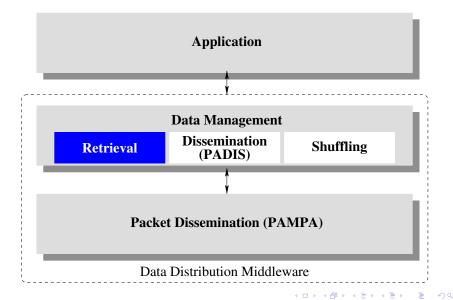
- A broadcast algorithm for MANETs
 - Requiring a limited number of retransmissions per broadcast
- A data replication algorithm for small sized data items
 - Providing geographical distribution of the replicas
- Shuffling algorithms
 - Leverage the replica distribution in the presence of node movement
- A data gathering algorithm
 - To retrieve an unspecified number of items using a small number of messages



- Power Aware Message Propagation Algorithm
- Broadcasts with significantly less retransmissions than flooding

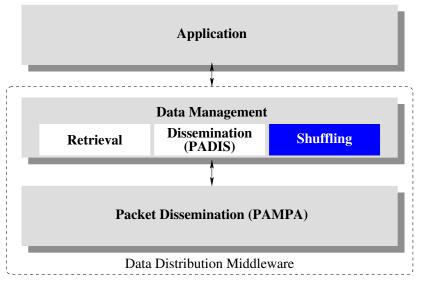
- Improves coverage or reduces retransmissions in comparison with other approaches
- Self-adaptive to node density
- Reduces the number of hops

An example of data distribution

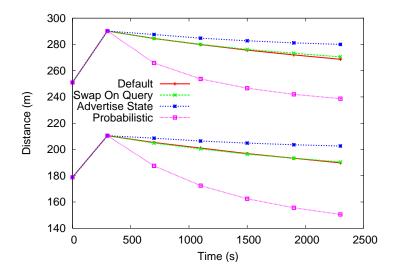

250m

- ns-2
- 1500m×500m
- 100 nodes

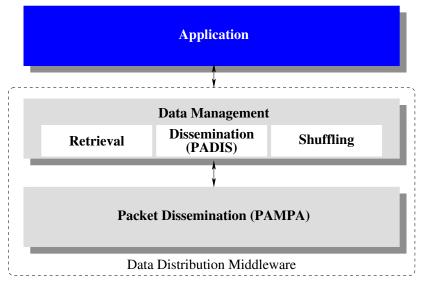
• Arrows indicate devices that retransmitted


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 7 copies
- 26 retransmissions


Queries

- Two attempts
- Nodes first broadcast the query with a small TTL
 - Set by a configuration constant
 - Adapts to past experiences
- If no reply is received, broadcast to all nodes
- Replies are sent point-to-point
 - Use the route constructed during query propagation (like DSR)



- Leverage replica distribution
 - In the presence of node movement
 - To mitigate failures of the initial distribution
- Triggered by queries
- Nodes negotiate the content of their storage spaces
- Four algorithms:

Algorithm	State in	Preserve	
Algorithm	Piggyback	On-demand	# replicas
Default			
Swap on Query		•	•
Advertise State	•	•	•
Probabilistic	•		

Application

- Distributes SIP's Address of Records (AORs) on a MANET [Leggio:06]
- Contributions
 - Dissemination of AORs
 - Improves scalability
 - An efficient algorithm for performing queries with multiple replies

 $\begin{array}{cccc} {\sf SIP} & \longrightarrow & {\sf dSIP} & \longrightarrow & {\sf SIPCache} \\ {\sf Wired} & & {\sf One-hop\ MANETs} & & {\sf Multi-hop\ MANETs} \end{array}$

- The thesis presents:
 - A broadcast algorithm
 - A data dissemination algorithm
 - Uses the signal strength to geographically distribute the replicas
 - Places a copy of each data item at a maximum (configurable) distance of every node

- Shuffling algorithms
 - To leverage the distribution when nodes move
 - Piggyback data on query messages
- The algorithms were experimented in a testbed application

- Experiment other shuffling algorithms
- Address:
 - Updates of data items
 - Self-configuration of the distance between copies

• Experiment the algorithms on different applications

Publications

- H. Miranda, S. Leggio, L. Rodrigues and K. Raatikainen. "A power-aware broadcasting algorithm". *PIMRC'06*. Finland. 2006
- H. Miranda, S. Leggio, L. Rodrigues and K. Raatikainen. "An algorithm for distributing and retrieving information in sensor networks". *OPODIS'06 (brief announcement)*. France. 2006
- H. Miranda, S. Leggio, L. Rodrigues and K. Raatikainen. "An algorithm for dissemination and retrieval of information in wireless ad hoc networks". *Euro-par 2007.* France.
- H. Miranda, S. Leggio, L. Rodrigues and K. Raatikainen. Chap. "Epidemic Dissemination for Probabilistic Data Storage". Baldoni et al.(eds.) *Global data management*. IOS Press. 2006
- S. Leggio, H. Miranda, K. Raatikainen and L. Rodrigues.
 "SIPCache: A distributed SIP location service for mobile ad hoc networks". *MOBIQUITOUS 2006*. USA.