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Abstract. Replication of data items among different nodes of a wire-
less infrastructureless network may be an efficient technique to increase
data availability and improve access latency. This paper proposes a novel
algorithm to distribute data items among nodes in these networks. The
goal of the algorithm is to deploy the replicas of the data items in a
way such that they are sufficiently distant from each other to prevent
excessive redundancy but, simultaneously, they remain close enough to
each participant, such that data retrieval can be performed using a small
number of messages. In most scenarios, our approach allows any node
to retrieve a data item from a nearby node. The paper describes the
algorithm and provides its performance evaluation for several different
network configurations.
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1 Introduction

Information management in wireless infrastructureless (ad-hoc) networks (with
or without node movement) is not a straightforward task. The inherently dis-
tributed nature of the environment, and the dynamic characteristics of both
network topology and medium connectivity, are a challenge for the efficient han-
dling of data. There are several policies that can be followed when dealing with
information management in these networks. In particular, one must first choose
whether to follow a centralised or decentralised approach.

Usually, ad-hoc networks are formed by peer nodes, with limited capabilities,
so it is unpractical to elect a single node to act as a repository for the data
needed by the other nodes; such node would require and consume significantly
more resources than other nodes. Moreover, this approach introduces a single
point of failure; this is unacceptable given that node failures are an integral part
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of ad-hoc networks (failures may happen due to voluntary departures, crashes,
or simply due to medium impairments). A decentralised approach is, therefore,
strongly favoured.

In a decentralised approach, the data items are spread among all the nodes
of the network. The data dissemination algorithm should balance the need to
provide data replication (to cope with failures) with the need to avoid excessive
data redundancy (as nodes may have limited storage capability). Furthermore,
data items should be distributed as evenly as possible among all the nodes
that form the network, avoiding clustering of information in sub-areas; an even
dissemination of data items should leverage lower access latency to any item from
any node in the network, i.e, whenever a data item is requested by a node S, the
distance to the node that provides the reply should be approximately the same,
regardless of the location of S. Naturally, the actual distance depends on multiple
parameters, such as the number of nodes in the network, the amount of memory
made available at each node, and the number of data items. Finally, since in
wireless networks both bandwidth and battery power are precious resources, the
algorithm should also minimise the amount of signalling data.

In this paper, we address the problem of data dissemination for wireless
infrastructureless networks where nodes do not move, are unaware of their geo-
graphical location and have limited resources. This scenario is similar to one of
those typically associated with wireless sensor networks. The paper introduces
an algorithm for efficiently spreading and retrieving data items. The implemen-
tation of these operations is orchestrated such that a limited number of messages
is required for retrieving any data item from the network, independently of the
addition or removal of nodes.

Our algorithm can be used to implement a shared white board to support
indirect communication among nodes of the sensor network. Any node would
publish or read information from the shared white board. Readers would not be
required to know, a priori, the publisher of the information and would be able
to find the desired data in their vicinity without being required to maintain a
copy of every item.

The rest of the paper is divided as follows. Section 2 describes the algorithm
in detail, illustrating its working principles and parameters. Section 3 evaluates
and comments the algorithm, by presenting the results of extensive simulations.
Section 4 presents related work, and finally, Section 5 summarises the main issues
raised in this paper and presents pointers for future work.

2 A Dissemination and Query Algorithm

In this paper, we assume that nodes have limited resources and are only able
to store a limited number of data items, representing a fraction of all the data
items advertised. Nodes always try to keep this space filled, occupying all free
space before beginning to overwrite other entries. The entries to be overwritten
are randomly selected. The system does not require the space at all nodes to
be of the same size. Each data item is composed of a key and a value with



application dependent semantics. An expiration time and a version number field
are available to update or remove data items. The goal of the algorithm is to
provide an adequate distribution of data items so that each node is able to find
a significant proportion of the total items in its memory or in one of its closest
neighbours.

We assume that the dissemination of new or updated data item is triggered
by one of the participants, who is said to be the owner of the item. To ensure
that at least one copy of each item exists, nodes do not replace the items they
own with items advertised by other nodes. It is assumed that owned items are
stored in a separate region of the memory space of the devices so that the space
available for storing third-party items is kept constant.

The algorithm provides two distinct operations: data dissemination and data
retrieval. These operations are implemented using three types of messages. In
the dissemination process, nodes cooperate to provide an adequate distribution
of the replicas of new or updated versions of data items. Dissemination messages

are broadcast following an algorithm to be described later. The retrieval process
is triggered by applications requesting the value associated with a key. The
algorithm first verifies if the value is stored locally and if it is not, it broadcasts
query messages. Nodes listening to the request and storing the corresponding
value send a reply message to the source of the query.

Messages share a common header that describes the type of message (dissem-
ination, query or reply) and a time to live (TTL) field, decremented by each node
that forwards the message. Like in many other algorithms for ad hoc networks,
messages are propagated using a store-and-forward approach: a node receives a
message, decides if the message must be forwarded or not and, before forwarding
the message, it may update one or more fields in the message. Query messages
accumulate the path to be used by a reply in a field, here identified as route

stack.

2.1 Broadcast Algorithm

We use the Pampa [1] message broadcast algorithm to propagate dissemination
and query messages. The advantage of Pampa is that it requires a considerably
smaller number of nodes to forward messages than a conventional flooding op-
eration. In Pampa, nodes more distant to the previous forwarder broadcast the
message earlier. Furthermore, Pampa prevents nodes whose expected additional
coverage would be smaller (locally evaluated by counting the number of retrans-
missions listened) from retransmitting. This is achieved by having each node to
hold the retransmission of a message by a period of time proportional to the
reception power of the first retransmission listened.

Due to the store-and-forward nature of the algorithm, Pampa is not used as
a black-box. Instead, every time Pampa decides to forward or drop a message,
it first issues a callback: the data dissemination algorithm may then update the
contents of the message, or overrule Pampa’s decision on the fate of the message.
In particular the algorithm may opt to force the transmission of a message that
would be otherwise dropped by Pampa.



The query and dissemination algorithms could be used in conjunction with
other broadcast mechanisms (e.g. [2, 3]). The reason to use Pampa is that it
offers useful information about the relative position in space of the nodes in the
neighbourhood of a given sender. Namely, knowledge of the following Pampa
properties are required to understand the dissemination algorithm:

– When a message is broadcast, the first node that becomes ready to retransmit
the message is the node that is more distant from the source.

– If a node notices that n neighbours have already forwarded a message, it
suggests to drop the message (i.e., it decides not to retransmit the message).
The value of n is a configuration parameter. We use Pampa with n set to 2.
Elsewhere [1], we have shown that n = 2 provides delivery ratios similar to
higher values on networks where nodes do not move and with densities rang-
ing from 625m2/node to 40000m2/node. The advantage of a smaller value is
that it requires a lower number of messages per dissemination operation.

2.2 Dissemination Process

Dissemination of data items is triggered by the source node with the broadcast of
a dissemination message using Pampa. The dissemination algorithm is presented
in Fig. 1.

Function register (Fig. 1, l. 1-6), shows that after the reception of a call
to advertise some data, the node prepares a registration message and uses the
Pampa broadcast algorithm to disseminate it. In dissemination messages, the
time from storage (TFS) field indicates the distance (in number of hops) from
the sender to the closest node that is known to have stored the items. Therefore,
the source node sets the TFS field to zero to indicate that the records are stored
locally.

Based on the Pampa dissemination strategy, each node receiving a message
places it on hold for a period of time proportional to the distance to the source
(l. 7-12). The holding period suggested by Pampa may be biased to leverage
the storage of the replicas among neighbouring nodes (l. 11). During the hold
period (l. 13-14), the node calculates mintfs, given by the lowest value of the
TFS from the original message and of all retransmissions listened. At the end of
the hold period, mintfs will indicate the distance in hops to the closest node(s)
that stored a copy of the item.

When the hold period expires (l. 15-24), the node decides on the fate of the
message and to store or not the corresponding data item. The decision takes as
input the following parameters: i) the output of the Pampa’s algorithm, that
takes into account the distance from the source and the number of retransmis-
sions listened; and ii) the mintfs computed during the hold period.

The algorithm tries to keep a replica of each item at most DbC (Distance

Between Copies) hops away of every node in the system. DbC is a configuration
parameter that should be set according to the network conditions.3 The data

3 Section 3 shows how different values of DbC affect the performance of the algorithm.



1: procedure register(data) ⊲ At the sender
2: Cache.addLocal(data)
3: tfs← 0; ttl←getNetworkDiameter

4: mid←createMsgId

5: msg←(REG,mid,data,tfs)
6: Pampa.broadcast(msg,ttl)

7: function regReceived(mid,data,tfs, ttl,delay) ⊲ At all other nodes
8: datamid ←data; ttlmid ←ttl
9: mintfsmid ←tfs

10: if tfs=DbC then ⊲ Bias Pampa delay
11: delay← (1+Cache.occupRatio)×delay

12: return delay

13: procedure dupReceived(mid,tfs)
14: mintfsmid ← min{mintfsmid,tfs}

15: procedure timerExpired(mid,forward)⊲ Decision to forward and store the data
16: if mintfsmid=DbC then

17: Cache.add(datamid)
18: forward←true
19: tfs← 0
20: else

21: tfs←mintfsmid + 1

22: if forward ∧ ttlmid > 0 then

23: msg←(REG,mid,datamid,tfs)
24: Pampa.broadcast(msg,ttlmid − 1)

Fig. 1. Data dissemination algorithm

item is stored if, at the end of the hold period, the value of mintfs remains equal
to DbC. Note that if some other node in the vicinity decides to store the data
item, it will retransmit the message with TFS set to zero and, therefore, mintfs

will be reset accordingly. The message is forwarded if the data item was stored or
if the output of Pampa’s algorithm suggests its dissemination. When a message
is forwarded, the TFS will be set accordingly to the decision to store the data
item: zero if the item was stored or mintfs+1 otherwise.

A node will store the data item if it is the first node in its own vicinity,
to decide to forward a message received with TFS=DbC. Depending on the
deployment of the nodes and of the location of the sources of the dissemination
messages, some nodes may have their probability of being required to store items
increased. We compensate those effects by making Pampa’s waiting time not only
dependent on the distance to the source but also on the available storage space
of the node when the probability of the node being required to store the data
item is high (that is, when the TFS of the first received message is equal to
DbC ). In our algorithm, a node that has few memory will volunteer later to
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Fig. 2. Progress in dissemination of an item

potentially store (and retransmit) an item than a node that has more memory
(l. 11). This is achieved by multiplying Pampa’s delay by a factor b proportional
to the occupancy ratio of the node’s memory (in our experiments we have set b

to vary in the range [1, 2]).

Fig. 2 exemplifies a dissemination when DbC is set to 2. Nodes that forwarded
the message are represented in gray and nodes that stored and forwarded the
item in black. Three copies of the item were stored. The first at the source node
and the remaining because the nodes had a mintfs of two. For clarity, only a
subset of the message receptions are represented. The numbers close to each
node represent the value of the TFS field advertised in the message.

2.3 Retrieval Process

To retrieve some value from the network, a node begins by looking for the key
in its local storage (Fig. 3, l. 4-11). If the value is not found, the node starts an
expanding ring search for the value, again using Pampa to reduce the number of
nodes forwarding the query. The Time-To-Live (TTL) of the first round is defined
using an adaptive function shown in lines 15 to 19 of Fig. 3. Assuming that
the dissemination algorithm achieved an adequate distribution of the items, the
distance (in number of hops) from the source of the query to any item should be
approximately the same and will depend mostly of the number of neighbours of
the node and their storage space. The adaptive function weights past experiences
of the node. For the qth query performed by the node, the TTL of the first round
is given by the recursive function qTTL(q) = k×qTTL(q−1)+(1−k)×dR(q−1)
where 0 < k < 1 is a constant to leverage the relevance of the most recent result,
dR(q − 1) is the distance (in hops) at which the reply to the previous query was
found and qTTL(q − 1) is the TTL of the previous query. In our experiments,
we adopted qTTL(1) = 1 and k = 0.5.

A node receiving a query message (l. 20-27), and that does not find the value
locally, will use Pampa and the value of the TTL field to decide if the message
should be retransmitted. Before retransmitting, the node appends the address of
the previous hop to the route stack field, in a route construction process similar
to the route discovery algorithm in some source routing protocols for MANETs
(e.g. [4]). If a node receiving a query message finds the requested key, it does not
enter the holding period of Pampa. Instead, it sends a point to point reply to
the source of the query. The reply message follows the path constructed in the
routeStack field of the query.



1: procedure Init ⊲ Set default values and constants
2: qTTL← 1
3: K← 0.5

4: procedure query(key) ⊲ At the source of the query
5: if Cache.hasVal(key) then

6: value←Cache.getVal(key)
7: deliver(key,value)
8: else

9: routeStack←{}; mid←createMsgId; keymid ←key
10: msgmid ←(QRY,mid,key)
11: Pampa.broadcast(msgmid,routeStack,qTTL)

12: procedure noReplyTimeout(mid)
13: ttl←getNetworkDiameter; routeStack←{}
14: Pampa.broadcast(msgmid,routeStack,ttl)

15: procedure replyReceived(mid,value,ttl)
16: qTTL← qTTL× k + (1− k)× ttl ⊲ Update default value for ttl
17: if ttl>1 then

18: Cache.add(keymid,value)

19: deliver(keymid,value)

20: procedure qryReceived(mid, key, routeStack, ttl) ⊲ At other nodes
21: if Cache.hasVal(key) then

22: value←Cache.getVal(key)
23: msg←(RPLY,mid,value,ttl)
24: send(routeStack,msg)
25: else if ttl> 0 then

26: routeStack←routeStack
⊕

localAddr
27: Pampa.fwd(msg,routeStack) ⊲ Message passed for Pampa decision

Fig. 3. Data retrieval algorithm

A reply found far away from the source of the query signals an ill distribution
of the item (l. 15-19). Therefore, the node that issued the query stores the item
locally if the reply was received from a node located more than one hop away.
It should be noted that the algorithm is orthogonal to the underlying routing
protocol. The reply message is unreliably sent to the network without verifying
if the destination is still in range. No provision is taken to limit the number
of replies sent to the node. Therefore, there is a reasonable probability that at
least one of the routes constructed during the query propagation remains valid
until the reply is delivered. This assumption is similar to that of many reactive
routing protocols for MANETs [4, 5] for route discovery.



2.4 Robustness Considerations

A premise of ad-hoc networks is the permanent addition and (possibly tempo-
rary) disconnection of nodes. Because it does not rely on a membership protocol,
the only impact of node removal in the system is a reduction of the number of
replicas of some of the items and the corresponding performance decrease. The
addition of a node to the network also does not imply any message exchange.
The node will begin to fill its storage space as soon as dissemination messages
start to be listened by the node.

3 Simulation Results

We have implemented a prototype of our algorithm in the ns-2 network simulator
v. 2.28. The simulated network is composed of 100 nodes uniformly disposed over
a region with 1500mx500m. Each node stores at most 10 data items advertised
by other nodes. The simulated network is an IEEE 802.11 at 2Mb/s. Network
interfaces have a range of 250m using the Free Space propagation model. No
routing protocol was used.

Runs are executed for 900s of simulated time. The traffic on each run consists
of 100 dissemination and 400 queries. Each node disseminates one data item
with 300 bytes in a time instant selected uniformly between 0 and 400s. All
measurements have been taken in number of messages and number of data items
stored at the nodes. Therefore, the size of the data item is only relevant for
estimating the traffic generated at the network. Simulations do not consider
expiration of items since they could artificially improve the performance of the
protocol by freeing additional resources on the nodes.

Queries start at 200s and are uniformly distributed until the 890s of simulated
time. The nodes performing the queries and the queried items are selected using
an uniform distribution. The simulation ensures that only advertised records can
be queried so that the evaluation of the protocol does not become obfuscated by
bogus queries.

No warm-up period is defined. All values presented below average 100 in-
dependent runs, combining different deployment and traffic files. Most of the
evaluation uses two metrics. The “average distance of the replies” measures the
distance (in number of hops) from the querying node to the source of the first
reply received. The distance of a reply is 0 if the value is stored in the querying
node. The “average number of transmissions per query” measures the total num-
ber of query and reply messages (initial transmissions and forwarding) performed
by all nodes and divides it by the number of queries.

3.1 Sensitivity to Different Network Configurations

The performance of the algorithm is affected by the number of nodes in the
neighbourhood of each node, the storage size at every node and the number
of items advertised in the network. The effect of the variation of each of these
parameters was evaluated individually, keeping the remaining according to the
baseline configuration described in the beginning of the section.
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Fig. 4. Variation of network density

Network Density. To evaluate the behaviour of the algorithm in different densi-
ties of nodes, we have varied the number of neighbours by configuring the nodes
with different transmission powers while keeping the size of the simulated space
constant. The transmission power was set such that transmission ranges var-
ied between 150 and 325 meters. The number of neighbours was estimated by
averaging the number of nodes that received every broadcast message on each
simulation with the same transmission range. The average reply distance and
the ratio of messages per query are presented in Fig. 4.

An interesting aspect of the figure is the small gains in the distance of the
replies as soon as the network density is sufficient to guarantee message propa-
gation. We identify this as a positive feature of the algorithm: it confirms that
the algorithm does not consume additional resources of the devices beyond those
that are associated to the predefined value of the DbC configuration parameter.
The algorithm preserves this storage space for other items.

Although the distance of the replies tends to stabilise with the grow of the
network density, the number of messages continues to decay. We attribute most of
this behaviour to the capabilities of the Pampa dissemination algorithm to adapt
to different network densities, preventing redundant retransmissions from nodes
which would not provide a significant contribution to the message propagation.

Cache Size. To evaluate the behaviour of the algorithm for nodes with con-
strained resources, we varied the number of items that can be kept by each node
between 2 and 16. The number of items disseminated was kept constant and
consistent with the baseline configuration. Fig. 5 shows that the average reply
distances for DbC 2 and 3 approach as the resources available in the neighbour-
hood of each device decrease, suggesting that DbC play an important role in the
performance of the algorithm, which is the target of further analysis below. Like
before, results tend to stabilise when the storage space made available surpasses
the requirements of the predefined DbC value.

Number of Items. The results for the different simulations varying the number of
items advertised are presented in Fig. 6. The figure confirms that the selection of
an adequate value for DbC affects the performance of the algorithm. In the case
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Fig. 6. Variation of the number of items

presented in the figure, the performance of DbC 2 degrades gracefully but be-
comes worst than DbC 3 when more than 550 items are advertised. The number
of messages follows a pattern similar to the increase in the average distance of
the replies, meaning that the adaptive function that defines the TTL of the first
query message is adequately preventing the nodes from flooding the network to
find a copy of the item, even in demanding conditions.

Analytical Evaluation. We analytically compare the variation of the number of
items with a theoretical distribution of the items following our model. Assuming
that there is sufficient storage space available, when DbC=n, all nodes should be
able to find a copy of any data item at a distance not higher than n+1

2
r (where

r is the transmission range of the devices) or ⌈n+1

2
⌉ hops. The rationale for

DbC=2 is presented in Fig. 7 and can be similarly derived for other values. The
figure shows nodes that forwarded the item in gray and nodes that forwarded
and stored the item in black.

From the tests where the transmission range was varied, we know that the
average number of nodes within a circle of 250m radius (the transmission range
used in the baseline configuration) is 17.85. Therefore, it is possible to conclude
that if the radius increases to 1.5 the original value, the number of nodes should
become 1.52 × 17.85 ≈ 40.163. Of these, 44,4% of the nodes require 1 hop to
reach the centre node while the remaining 55.6% are 2 hops away. The average
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Fig. 7. Storage of a data item

distance of the replies should therefore be, in this configuration, 1.556. This value
is plotted in a horizontal line in the left graphic of Fig. 6.

The storage capacity of the nodes in the 1.5 times the radius of the trans-
mission range is given by n ×

(

SS + i

N

)

where n and N are respectively the
number of nodes in the region and in the simulation (recall that data items
are uniformly advertised by all nodes and that nodes store the items adver-
tised in a separate region of the cache), i is the number of items advertised and
SS is the Storage Space made available at each node. Relevant for our study
is to find the maximum number of items that can be stored in our baseline
configuration with DbC=2, which corresponds to the solution of the equation
i = 40.163 ×

(

10 + i

100

)

⇒ i ≈ 671.21. We define this value as the saturation
point of our algorithm for the baseline configuration and when DbC=2.

The saturation point is relevant to define the theoretical limit of a configu-
ration from the number of nodes, their cache sizes and the number of advertised
items. The figure shows that the simulation results cross the expected distance
of the replies at approximately 2/3 of the saturation point. Our interpretation
of this result is that there is some undesirable redundancy of the data items
stored that prevents other items from occupying their position. We attribute
this behaviour to different factors:

– A fundamental assumption of the model above is that at every forwarding,
there exists one node located precisely at distance r from the previous source.
Although Pampa favours the forwarding of the messages by the nodes more
distant to the source of the previous transmission, it is only possible to as-
sume that the node will be located at some distance lower or equal to r.
These smaller distances result in additional hops travelled by the dissem-
ination and query messages and reduces the effective area that should be
accounted in the estimation of the saturation point;

– The particularities that occur at the borders of the simulated space, where
it is possible that some nodes remain an higher number of hops away from
the data (in Fig. 7 consider for example that the rightmost node does not
exist);

– Concurrency issues and anomalies in the uniform distribution of the nodes.
Notice for example that the dissemination presented in Fig. 2 places two
copies of an item close to each other because there is no link between the
nodes.
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It should be noted that even in demanding conditions, the algorithm is capa-
ble of providing an acceptable performance requiring a small number of messages
and providing the replies within a reasonable number of hops.

3.2 Traffic for Dissemination

Figure 8 shows the number of messages per dissemination for different values
of DbC and network configurations. The figure shows that the number of mes-
sages is independent of variations in the storage space or in the number of items
advertised but, as expected, decreases with the network density. This confirms
that Pampa adapts the number of transmitting nodes to the node density, re-
ducing it for higher densities. The x axis of the graphic harmonises the different
variations to the baseline configuration in a metric named Relative Storage Size
(RSS) which counts the proportion of advertised items that can be stored in a

node and in its 1-hop neighbourhood. RSS is given by (nneigh + 1) SS
Items where

nneigh is the average number of neighbours, SS the storage space at every node
and Items the total number of advertised items.

We emphasise that the number of messages presented in Fig. 8 are those
required by Pampa to flood the entire network and that this would be the num-
ber of messages required by queries if no early dissemination of the items was
performed. A comparison with the number of messages presented in Figs. 4 to 6
shows that the additional number of messages spent on item dissemination is
rapidly attenuated after a small number of queries. Furthermore, our algorithm
provides the additional advantage of replicating the data items, making the net-
work more robust against failures and departures of nodes.

4 Related Work

Distributing replicas of each data item is an effective way to achieve data avail-
ability and reduce latency in MANETs. However, the limited resources of the
devices must be considered in the estimation of the number of replicas of each



data item to be stored. Most of the research in distributed storage follows some
deterministic algorithm for deciding the location of the replicas.

In some cases, the goal is to store replicas of the data close to the nodes that
are more likely to access it in the future. Estimation of future requirements is
based for example on the history of previous accesses or by user preferences. The
frequency of the accesses to the data items is used in [6] to define three deter-
ministic algorithms for the allocation of replicas. Neighbourhood awareness is
taken into account as well, by eliminating replica duplication among neighbour-
ing nodes or group of nodes. The results show that neighbour awareness improves
the accessibility of data items, at the expenses on more traffic in the network
to maintain neighbourhood information. More recently [7], the same author in-
vestigated particular scenarios where exists a correlation between different data
items and how the inference of these correlations could benefit caching policies.

In autonomous gossiping [8] the data items themselves try to identify other
hosts which may be interested in the item, based on the data item’s own profile
and host’s profile, advertised during the registration phase. This approach is
in contrast to the traditional push model were data items are injected in the
networks by the possessor nodes. Profiles are maintained in a distributed self-
organising way, and updated using gossiping techniques. When data items arrive
at a node, the autonomous gossiping algorithm is applied to decide what the data
item will do, in an autonomous and self-organising fashion. Data items in a host
decide whether continue to reside, migrate or replicate to another host.

The replication model presented in [9, 10] assumes the presence of a single
data source in the ad-hoc network. In [9], queries are unicast, addressed to the
data source, and if a node in the path has either the data cached locally or the
path to a node that holds the queried item, a reply is immediately returned
to the querying node; otherwise, the request is forwarded to the data source.
In [10] the querying scheme is broadcast; a four-way handshake is implemented
to prevent nodes from receiving more than one reply to a given issued query. We
deem that such a scheme is useful when the target data item is large in size. If the
advertised items are small, it may be faster to send the queried item directly.
The performance of both algorithms depends of the location of the querying
node and of the previous queries for the same item.

In Data-centric models for sensor networks, data is aggregated according
to its type in well-known nodes in the network. A popular approach [11–13]
defines a hash function that maps the type of each data item on a geographical
coordinate, creating a Geographical Hash Table (GHT). All these approaches
have in common the requirement that the devices are aware of their geographical
location. Like in our algorithm, some of the proposals geographically distribute
the replicas by sensors at different regions of the network in an effort to reduce
the overhead of queries [14, 12, 15]. The majority of the algorithms benefits from
the geographical information made available to the nodes to partition the sensor
network area, keeping a replica at each partition.

A study on the trade-off between the energy spent in the replication of data
items and on queries in sensor networks was presented in [16]. However, the



study can not be applied to our model because the authors assume a random
deployment of the replicas and an expanding-ring search query. This is in contrast
with our work where the goal is to evenly distribute as much replicas as necessary
to cover the entire network. As simulations have shown, in most of the cases,
our algorithm is able to prevent the energy demanding expanding ring search
operation by resolving the query at the first round.

Non-uniform information granularity [17] proposes to trade off information
accuracy by the energy spent in the dissemination by decreasing the accuracy
of the information as it becomes more distant from the source. The gains are
obtained by decreasing the number of messages forwarded with the distance
to the source. In contrast with our proposal, authors assume that sensors are
powerful enough to store all the events advertised.

Instead of using knowledge gathered from past experiences or user prefer-
ences, our algorithm relies on the location of the nodes to place a replica close
to each node. However, our algorithm relies on Pampa to increase the distance
between copies, instead of requiring nodes to be aware of their location. The uni-
form distribution of the algorithm makes it adequate for networks composed of
resource constrained devices, in particular, without a location device and with
limited memory. Access patterns more favourable to the algorithm are those
where it is not possible to infer future accesses to the data from past experiences
or when the queries to a data item are uniformly distributed over the network.

5 Conclusions

This paper has presented an algorithm for retrieving and distributing informa-
tion in ad-hoc networks. The algorithm is fully distributed as it does not assume
the presence of only a few data sources in the ad-hoc network; each node, instead,
can advertise own data items. The main goal of the algorithm is ensuring an even
geographical distribution of the disseminated data items, so that requests for a
given data item are satisfied by some nodes close to the source of the query.

This goal is obtained by combining a mixture of different techniques. Broad-
cast messages are used to leverage the algorithm from the presence of an under-
lying routing protocol. This approach enables using neighbourhood information
without requiring nodes to run an expensive membership protocol. Simulation
results show that the algorithm achieves a fair dissemination of items through-
out the network. Furthermore, simulation results have also shown that the initial
cost of data item dissemination is rapidly absorbed by the substantial reduction
in the number of messages required for retrieving a value from the network.

There are different interesting applications for the algorithm. It can be used
to implement a shared white board in resource constrained devices like those in
sensor networks. A possible subject of future work can be to tailor the algorithm
to specific applications. An interesting application would be a naming service,
such that nodes advertise a combination of user name and contact address in
the ad-hoc network. Nodes could query for a given user name (the key used in
queries) and retrieve the contact address as value for the requested key.
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