An Algorithm for Distributing and Retrieving Information in Sensor Networks OPODIS 2006

Hugo Miranda¹ Simone Leggio² Luís Rodrigues¹ Kimmo Raatikainen²

¹ University of Lisbon and LaSIGE - Portugal

² University of Helsinki - Finland

December 13th, 2006

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

Evaluation

The Problem

- To make data available to all nodes in a sensor network
 - e.g. posts to a white board
- Taking into account that
 - Data should be replicated
 - Nodes may fail
 - It is not possible to replicate everything at all nodes
 - Storage space is limited
 - Using as few messages as possible
 - Nodes have limited batteries
 - Replicas should be scattered over the network
 - Reduces access latency
 - Saves messages
- Assumption
 - Sensors are not aware of their location
 - i.e. they do not have a GPS device
 - Omni-directional antennas

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

Related Work

Hara: {01,04} Requires neighborhood awareness. Number of replicas depends of an estimated access pattern.

Datta:04 (Autonomous gossiping) Nodes advertise the profile of the data they are interested. Items migrate.

Yin:06 Assumes a single source of data.

Data centric Requires location awareness. Some (Li:00,Ghose:03,Liu:06) geographically distribute the replicas. An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

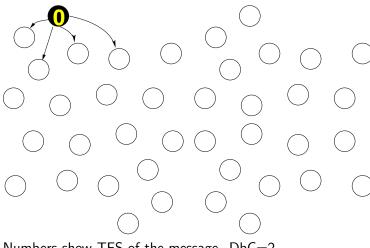
Presentation of the Algorithm

The Algorithm

ldea

- Store a copy of each item at every n (DbC) hops
 - So that each node has a copy of each item at most $\left\lceil \frac{n+1}{2} \right\rceil$ hops away
- Use queries to fix the distribution

Requires

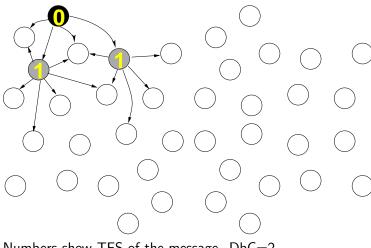

- A counter on the dissemination message (TFS)
 - Incremented by the nodes that forward the message
 - When the counter reaches DbC, the node stores the message and resets TFS
- An algorithm to prevent too many nodes from forwarding the message (PAMPA)
 - Sorts nodes according to the reception power of the messages
 - Only the nodes more distant to the source retransmit

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

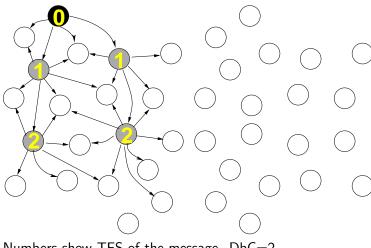

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Presentation of the Algorithm

Numbers show TFS of the message. DbC=2

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Jac. ∃ ▶ ∢

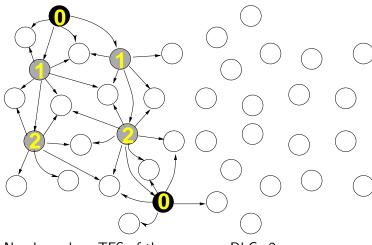

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Presentation of the Algorithm

Numbers show TFS of the message. DbC=2

SQ CA ≣⊳


An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Presentation of the Algorithm

Numbers show TFS of the message. DbC=2

< 口 > < 同 > うくで ≣⊳

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

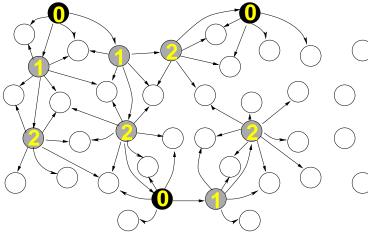
Evaluation

Numbers show TFS of the message. DbC=2

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 < のへ(や

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²


Motivation

Presentation of the Algorithm

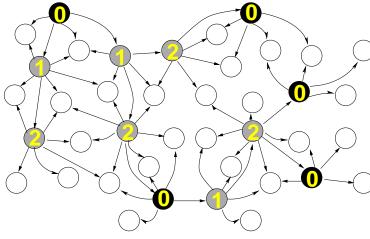
Evaluation

Numbers show TFS of the message. DbC=2

< ロ > < 団 > < 三 > < 三 > 、 三 ・) へ (や

Numbers show TFS of the message. DbC=2

An Algorithm for Distributing and Retrieving Information in Sensor Networks


Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

Evaluation

< ロ > < 団 > < 三 > < 三 > 、 三 ・) へ (や

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

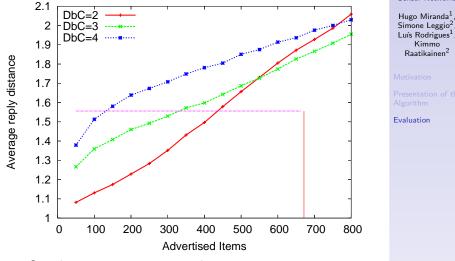
Evaluation

Numbers show TFS of the message. DbC=2

<ロ> <日> <日> <日> <三> <三> <三> <三> <三> のへ(~

- Nodes first broadcast the query with a small TTL
 - Adaptive value from past experiences
- If no reply is received, flood the network
- Locally store the item if the reply was received from far away
- Replies are sent point-to-point
 - Use the route constructed during query propagation (like DSR)

An Algorithm for Distributing and Retrieving Information in Sensor Networks


Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Presentation of the Algorithm

Evaluation

Distance of the replies

- Simulations in ns-2, 100 nodes
- Square defines the theoretical limit for DbC=2
- ▶ Degrades gracefully with the number of items 💷 🔍 🔍

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Summary

- We presented an algorithm for disseminating replicas of data items that
 - Geographically distribute the replicas
 - Even when nodes are not aware of their location
 - Creates a number of replicas depending of the size of the network
- Future Work
 - "Repair" the distribution when nodes move

An Algorithm for Distributing and Retrieving Information in Sensor Networks

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Notivation

Presentation of the Algorithm

Evaluation