A Power-Aware Broadcasting Algorithm

Hugo Miranda¹ Simone Leggio² Luís Rodrigues¹ Kimmo Raatikainen²

¹ University of Lisbon - Portugal LaSIGE

² University of Helsinki - Department of Computer Science - Finland

MiNEMA

September 14, 2006

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

Motivation

 Many protocols for Mobile Ad Hoc Networks (MANETs) require message broadcast because:

- Membership changes
- Nodes move
- Location of some data is unknown
- Examples:
 - Routing protocols (e.g. DSR, AODV)
 - For route discovery
 - Reputation systems
 - For learning the reputation of an unknown node

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

A CA

Flooding

- The most common approach for broadcast in MANETs.
- Implementation:
 - Every node listening for a message for the first time retransmit it.

《曰》 《聞》 《臣》 《臣》 三臣

- Redundant
 - Only some of the nodes should retransmit
- Expensive
 - Power consumption
 - Bandwidth

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

Jac.

Questions

- A retransmission adds from 0 to 61% to the coverage of a previous transmission [Tseng 02]
- ▶ Which of S's neighbours should retransmit?
 - The more distant the retransmission is from the source, the better
- How to determine best candidates in run-time?
 - The optimal set of nodes for retransmitting changes with every message:
 - Nodes move
 - Don't have GPS or other location awareness mechanism
 - The source of the broadcast changes
 - Different node densities require different number of retransmissions

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

Probabilistic Approaches

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

- A node retransmits a message with some probability 0
 - Flooding is a particular case with p = 1
 - Doesn't adapt well to different network densities
 - Less neighbours require more retransmissions (higher p)
 - Mitigation: If a node does not listen to enough retransmissions, due it independently of p [Haas 02]

< 口 > < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > <

Probabilistic Approaches

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

- A node retransmits a message with some probability 0
 - Flooding is a particular case with p = 1
 - Doesn't adapt well to different network densities
 - Less neighbours require more retransmissions (higher p)
 - Mitigation: If a node does not listen to enough retransmissions, due it independently of p [Haas 02]

Counter-based approaches [Haas 02, Tseng 02]

- Nodes wait a bounded random time t and listen
- Retransmit if, at the end of t
 - the number of retransmissions listened is below a threshold n
- Adapts well to different densities
- Random selection of the nodes
 - No attempt to select those providing better additional coverage

< 口 > < 同 >

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Power-based approaches [Tseng 02]

- Nodes wait a bounded random time t and listen
- Retransmit if, at the end of t
 - The maximum power of the reception did not exceed a threshold p
- The higher the power of the reception, the lower the distance to the source
 - Discards transmissions with a negligible additional coverage
- Random selection of the nodes
 - No attempt to select those that improve more the coverage

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

Improving Node Selection

PAMPA Power-Aware Message Propagation Algorithm Rationale Rank nodes for retransmission according to their distance to the source

- Nodes wait a time t proportional to the power of the reception and listen
- Retransmit if, at the end of t
 - the number of retransmissions listened is below a threshold n

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

PAMPA

- Listens to the number of retransmissions
 - Adapts well to different densities
- ► Higher distance to the source ⇒ lower power at the reception ⇒ smaller wait time
 - Nodes to retransmit will be those that provide higher contribution to coverage

< ロ > < 行い

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

SQ C

Evaluation

- Simulations in *ns*-2, Two Ray Ground, 100 nodes
- Pampa vs Power and Counter-based (for the same thresholds)
 - Doesn't matter which if nodes are close
 - Pampa increases delivery ratio
 - More evident in sparser networks

A Power-Aware Broadcasting Algorithm Hugo Miranda¹,

Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions

∃ 𝒫𝔄𝔄

Evaluation - Number of Hops

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Votivation

Related Work

Pampa

Evaluation

Conclusions

500

 Number of hops travelled by a message before being delivered to each node

- Smaller in Pampa
 - Each retransmission covers more nodes

Conclusions

- Broadcasting appears to be unavoidable in MANETs
 - But flooding is an undesirable implementation
- Existing alternatives to flooding either
 - Don't adapt well to different densities
 - Don't take full advantage of the location of the nodes
- PAMPA
 - Nodes more distant to the source retransmit first
 - Prevent other nodes from retransmitting
 - Improves coverage in sparse networks
 - Reduces the number of hops required to deliver the message
 - Requires the same number of retransmissions than previous approaches

A Power-Aware Broadcasting Algorithm

Hugo Miranda¹, Simone Leggio², Luís Rodrigues¹, Kimmo Raatikainen²

Motivation

Related Work

Pampa

Evaluation

Conclusions