
A Two-Side Perspective on Cooperation in

Mobile Ad Hoc Networks⋆

Hugo Miranda and Lúıs Rodrigues

Departamento de Informática - Faculdade de Ciências
Universidade de Lisboa

Portugal
{hmiranda,ler}@di.fc.ul.pt

Abstract. Technological advances are leveraging the widespread de-
ployment of mobile ad hoc networks. An interesting characteristic of
ad hoc networks is their self-organisation and their dependence of the
behaviour of individual nodes. Until recently, most research on ad hoc
networks has assumed that all nodes were cooperative. This assumption
is no longer valid in open (spontaneous) networks formed by individuals
with diverse goals and interests. In such environment, the presence of
selfish nodes may degrade significantly the performance of the ad hoc
network. In open mobile networks, users may become selfish to defend
their devices from the unfair load distribution presented by many proto-
cols, designed to optimise other criteria, such as the number of hops in
the message path.
This paper summarises research results addressing the problem of un-
fairness in open mobile ad hoc networks from a two-side perspective: the
detection and punishment of selfish users and the definition of a more
fair network environment that attempts to leverage the load among the
participants to prevent selfish behaviour.

1 Introduction

A technology such as Mobile Ad Hoc Networks (MANETs) promotes the emer-
gence of open ad hoc communities of users. These communities may support
distributed games, chatting, file sharing, or Internet access in regions with in-
complete infra-structured networked coverage. They are likely to emerge in lo-
cations that gather large numbers of civilians such as airports, shopping malls,
convention centres, and university campus. In such environment, different users,
with different goals, share the resources of their devices, ensuring global connec-
tivity. This sort of communities can already be found in wired networks, namely
on peer-to-peer networks.

Until recently, the research effort on mobile networks (infra-structured or
ad hoc) has focused mainly on routing and usually assumes that all nodes are

⋆ This work was partially funded by LaSIGE and by FCT project MICAS - Middleware
para sistemas adaptáveis ao contexto, POSC/EIA/60692/2004 through POSC and
FEDER.

cooperative. These assumptions hold on application such as military or search-
and-rescue operations, where all nodes belong to the same authority and their
users share the same goals. There is a significant difference between the fixed
and the mobile environment. Some resources, like battery power, are scarce in a
mobile environment and can be depleted at fast pace with the device utilisation.
In this scenario, open MANETs will likely resemble social environments: a group
of persons can mutually benefit from cooperation as long as every participant
contributes with approximately the same share. Selfish behaviour threatens the
entire community. Optimal paths may not be available and cooperative nodes
may become overloaded and be forced to abandon the community. In the worst
case scenario, the network may become partitioned. This kind of problems as
been already observed on peer-to-peer file distribution systems. For instance, it
was observed in Gnutella that the number of sites providing valuable content to
the network is a small part of the number of users retrieving information [1].

In order to effectively support open and spontaneous communities, MANETs
should provide mechanisms and algorithms that discourage selfish behaviour.
However, selfish behaviour may emerge as a consequence of the unfair division of
tasks by middleware or routing protocols. Therefore, protocols must also consider
the leverage of the resources by the participants to prevent users from justifiably
adopting selfish behaviour. It is easy to find algorithms for MANETs that do
not offer a fair distribution of load among the participants. Typically, to save the
bandwidth and energy consumption required for dynamic reconfiguration, nodes
elected to perform a given role in the system, are forced to perform that role
until they fail or disconnect. We argue that load balancing is a vertical concern,
that must be addressed at all levels of system software.

This paper surveys research results of the authors [2, 3] on mechanisms to
provide a fair division of tasks in a MANET. Fairness is improved under two
complementary perspectives: to identify and punish selfish nodes and to enhance
existing protocols with respect to the fair division of tasks. For the later, this
paper describes preliminary results concerning a fairness monitoring service that
rates the effort of each device on message forwarding. We would like to point
that our fairness monitoring service may be useful to promote load balancing in
different system layers: distributed protocols may use the output of the service to
rank candidates to perform specific roles or to trigger a new role allocation when
some unfairness threshold is reached, routing protocols can use it to enhance load
balancing between equivalent routes.

The paper is organised as follows. Related work is discussed in Section 2.
The Fairness Monitoring Service is described in Section 3. The algorithm for
monitoring selfishness behaviour is presented in Section 4. Finally, Section 5
concludes the paper.

2 Related Work

A possible approach to mitigate selfishness is to reward cooperative nodes. In
modern societies, services are usually provided in exchange of an amount of

money, previously agreed between both parts. The Terminodes [4] project pro-
poses the use of a virtual currency named beans. This currency is used by nodes to
pay for the forwarding of their own messages. The payment is distributed by the
intermediary nodes that forwarded the message. Unfortunately, current imple-
mentations of reliable digital cash systems require several different participants
and the exchange of a significant number of messages. To reduce this overhead,
Terminodes assume that nodes are equipped with a tamper resistant security
module, responsible for all the operations over the beans counter. The security
module refuses to forward messages whenever the number of beans available
are not sufficient to pay for the service. However, this approach is inadequate
for MANETs since that, to ensure the authentication of the tamper resistant
modules, a Public Key Infrastructure (PKI) is used.

Reputation Systems Recently, the literature has been emphasising the advan-
tages of using reputation systems for the establishment of trust relationships in
large scale networks, for example to improve the reliability of packet delivery in
ad hoc networks [5–7]. Reputation systems provide the mechanisms to capture
and spread information about which users are reliable and which users are un-
reliable. In most of these systems, the initial trust level for a node with which
other has never interacted is based on the reputation information disseminated
by other nodes.

Reputation systems are an adequate tool for detecting misbehaviour. How-
ever, they fail to adequately recompensate nodes that for some reason are overused,
for example because of their location. Nodes may become overloaded with re-
quests because they are positioned in a strategic point of the topology. A well-
behaved node that temporarily supports a huge amount of requests should be
rewarded by this service. To the extent of our knowledge, no existing reputation
system adequately addresses this problem.

Fairness in Routing Protocols Several routing protocols for MANETs have ad-
dressed the fairness problem as a side effect of the principal goal of improving
packet delivery ratio. However, in the majority of the cases, these routing proto-
cols rely on the information voluntarily provided by the nodes and therefore, are
not adequate for an environment where it is assumed that nodes can lie. This is
the case of the power-aware class of routing protocols, which rely on the energy
information provided by each node to select message routes. Typical examples of
fairness metrics used by power aware routing protocols are the “time to network
partition” or “node’s lifetime”.

Another example of protocols assuming the cooperation of the user are those
in the load-aware category. Examples are ABR [8] and DLAR [9]. In these proto-
cols, intermediate hops append load information to the route discovery messages.
In the Hotspot Mitigation Protocol (HMP) [10] and in the extension to DSR pro-
posed by Hu and Johnson [11] congested nodes temporarily suspend their normal
route discovery behaviour by ignoring incoming route requests destined to other
nodes. The decision to ignore route requests is local to the nodes.

3 The Fairness Monitoring Service

We now describe our fairness monitoring service. The goal of this service is to
provide to middleware protocols running on a mobile device a metric allowing to
compare the effort of the node with that of its neighbours. Middleware protocols
can for example volunteer for coordinating the next round of some protocol
requiring a large number of messages if they feel that its effort is below average or
refrain from propagating route requests if they have been forwarding a significant
amount of traffic.

The fairness monitoring service provides two metrics that capture different
network conditions. The metrics are derived from information extracted from
packets snooped from the network; therefore, their evaluation does not require
the exchange of any additional dedicated control messages. We start by describ-
ing the state maintained by our monitoring service and then proceed to present
and discuss the metrics it offers.

3.1 State

Each node i keeps a packet list pl i containing the following information for each
packet snooped from the network: i) a time-stamp of the moment at which
the packet was snooped, ii) the address of the node that forwarded the packet
and, iii) the packet size. Note that more than one entry may exist for the same
packet, if it is successively forwarded by several neighbours of i. We define the
neighbourhood of node i as the set of nodes whose transmission can be listened
by node i. The algorithm keeps a few other variables, that are derived from the
content of pl i.

pktsi is the number of packets forwarded by i;

pkts
i

is the number of packets forwarded by other nodes;

nnodesi is the total number of nodes that have sent at least one of the packets
tracked in pl i;

tsizei is the sum (in bytes) of all packets tracked in pl i;

The record of a message is kept in pl i for a predefined period of time, denoted
historyperiod. Entries older than historyperiod are discarded from pl i, to make
room for new entries. The memory used by the fairness monitoring service is
limited by imposing a maximum size to the number of entries in pl i.

3.2 Metrics

The service provides two metrics, denoted α and χ, derived from the informa-
tion extracted from the packet list pl i. These metrics evaluate, respectively, the
fairness of the workload distribution between i and its neighbours, and the con-
gestion at i’s neighbourhood.

Relative Regional Load The metric αi evaluates the fairness of the work distri-
bution between i and its neighbours. The metric is defined by the ratio between
node i’s number of forwarded messages and the average number of messages
forwarded by nodes in the neighbourhood of i weighted by an attenuation factor
to decrease the relevance of the metric when the total number of messages is
low. Note that when either the total number of samples or the ratio R(αi) are
below some given thresholds, we simply default αi to 0. The definition of α is
given in Eq. 1.

αi =















(

1 −
1

pktsi+pkts
i

)

· pktsi ·
nnodesi

pktsi+pkts
i

,

pktsi + pktsi ≥ min list size

∧

pktsi ·
nnodesi

pktsi+pkts
i

> min avg

0, otherwise

(1)

Regional Congestion The metric χi evaluates the congestion at i’s region. Con-
gestion is usually evaluated by the number of messages waiting at the node’s
transmission queue [11]. In this paper, we propose a congestion metric whose
evaluation relies on the packet records kept locally at the packet list.

The χi metric estimates congestion in the neighbourhood of node i by eval-
uating the bandwidth usage in the region. It is defined as a ratio between the
bandwidth spent during the last historyperiod (given by tsizei) and the avail-
able bandwidth during the same period (given by historyperiod · NABPS, where
NABPS is the available bandwidth in bytes per second on the target network).
Precisely:

χi =

{

0, pktsi + pkts
i
< min list size

(

tsizei

historyperiod ·NABPS

)2

, otherwise
(2)

The ratio is squared to make the function more steep, thus promoting more
congested regions in detriment of less congested ones. If the number of mes-
sages that have been sent recently is below a given threshold (and therefore not
significant), the metric χi simply defaults to 0.

Note that the network available bandwidth in bytes per second, NABPS, is a
constant for each target network, that depends on the maximum link bandwidth
and on the MAC protocol.

Applications of Metrics Fairness information can be obtained by combining both
metrics. The selection of an adequate function to combine both αi and χi is ap-
plication dependent: the exact thresholds or the weights used to balance each
of the metrics must be tuned depending on the behaviour required by the mid-
dleware service or protocol. The next section illustrates a concrete meaningful
combination of the two metrics provided by our monitoring service that allows
to improve fairness in DSR.

3.3 Fair Routing in MANETs

To illustrate the usefulness of our fairness monitoring service, we now briefly
describe an extension to the Dynamic Source Routing (DSR) [12] protocol that
makes use of the metrics it provides. The goal of this extension, called simply
Biased DSR, is to mitigate route concentration by leveraging packet routing
across different nodes. This extension does not require the exchange of additional
messages and is fully compatible with nodes running implementations following
the DSR IETF Draft [13].

DSR Overview For completeness, we now provide a brief overview of the DSR
protocol. The interested reader is referred to [12] for an in-depth description.

DSR, as the name implies, uses source routing, i.e., the header of data mes-
sages includes the route to be followed. Each intermediary hop is required to
inspect the packet header to determine the address of the next hop. Sources
of packets learn new routes by flooding a RouteRequest packet in the net-
work and waiting for the correspondent RouteReply. When a node receives a
RouteRequest packet it may: i) send back a RouteReply packet if it is the
final destination of the request; ii) send back a RouteReply packet if it knows
a route to the destination; iii) otherwise, rebroadcast the RouteRequest

packet, after appending its own address to the DSR header (but only if the
RouteRequest is not a duplicate). A source may also learn a new route by
inspecting the routes carried in the header of packets snooped from the network.

Delay of Route Requests The metrics provided by the fairness monitoring
service grow proportionally with the node effort and congestion in the region.
Each of them may return any positive value and have unrelated scales. To har-
monise these functions, we define two coefficients, respectively kα and kχ. These
factors are also used to rate the relevance attributed to fairness and congestion.
The resulting combined metric, called effort index and denoted Φ is presented
in Eq. 3.

Φi = kα · αi + kχ · χi (3)

The key idea of the Biased DSR is to apply a different delay to the propaga-
tion of route requests according to the value of Φi. The effort index Φi is used
to increase the probability of routes using less congested nodes being advertised
and selected. When receiving a route request, node i, running Biased DSR, will
evaluate Φi and multiply it by a constant ref delay to determine the delay to be
applied to the route request. The route request will be handled following DSR
standard procedures if the outcome determines a negligible delay and will be
discarded if the delay exceeds some constant max delay. For intermediate val-
ues, the route request will be processed according to the DSR standard after the
computed delay has expired. Figure 1(a) shows the adaptiveness of the function.

The delay of route requests is a flexible mechanism that favours the discovery
of alternative routes circumventing congested regions and therefore of leveraging
the load of more congested nodes.

 0 0.4 0.8 1.2 1.6
αi 0

 100
 200

 300
 400

 500

Kbytes/s

 0
 0.02
 0.04
 0.06
 0.08

delay (s)

(a) Delay applied to route requests

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 15 20

S
ta

nd
ar

d
D

ev
ia

tio
n

CBR connections

DSR stop
Biased DSR stop

DSR slow
Biased DSR slow

DSR fast
Biased DSR fast

(b) Standard deviation

Fig. 1. Evaluation of Biased DSR

Evaluation The improvements of Biased DSR in the distribution of the mes-
sages forwarded by the nodes in a MANET was evaluated measuring the stan-
dard deviation of the number of link layer frames sent by each node. Figure 1(b)
shows the standard deviation of the number of link layer frames sent by 70 nodes
randomly deployed in a region of 2000mx250m using the ns–2 network simula-
tor. The x axis shows the number of simultaneous connections, between random
endpoints. In each connection, a node sends 8 packets of 512 bytes per second
using UDP. Connections last for a random interval between 40s and 80s, after
which they are replaced by another between randomly selected endpoints. Nodes
move at speeds between 1 and 2m/s (slow), 2 and 5m/s (fast) or do not move
for the entire simulation (stop). It can be seen that the standard deviation is
9% to 30% lower when using Biased DSR, what represents a significant gain in
load distribution. As expected, DSR is less fair in scenarios with higher route
stability and with more traffic.

4 Selfishness Detection

The previous algorithm provided the mechanisms for nodes to rate their effort in
relation with its neighbours. In this section, we describe an algorithm providing
the mechanisms to detect the misbehaviour of other nodes.

People tend to cooperate as long as they notice that there is a fair division
of tasks in a group. This observation can also be applied in MANETs where
the unfairness of the service division may prevent users from using their own
devices. Therefore, any selfishness prevention algorithm must also include some
mechanisms to foster a fair distribution of resource consumption. This can be
achieved if nodes are allowed to present some “justified selfishness”, by refusing
some of the requests received, forcing the clients to search for alternatives.

This section presents a new selfishness prevention algorithm presenting a
long lived memory that allows nodes to be rewarded by services provided in the
past. Additionally, the algorithm introduces new features by tolerating justified

selfishness. The algorithm uses only one type of message, that each node period-
ically broadcasts. Furthermore, nodes that do not participate in the algorithm
may be still allowed to benefit from the MANET.

The algorithm supports the management of fairness by allowing nodes to
publicly declare that they refuse to forward messages to some nodes. Nodes are
uniquely identified by an address which we assume that can not be changed.
Each node i maintains three variables:

friendsi The set of neighbours to which i is willing to provide services.
foesi The set of neighbours to which i is not willing to provide services.
selfish i The set of neighbours which are known to act as if i is a foe.

We define a neighbour node of i as a node that has recently sent a message
received or snooped by i. Each node i periodically advertises the content of
these three variables in a control message named SelfState broadcasted to i’s
neighbours.

In order to evaluate the degree of selfishness of other nodes, and to detect
inaccuracies in the information they advertise, each node keeps a record of re-
ceived SelfState messages. For each other neighbour node j, node i also keeps
a number of status variables allowing it to monitor j’s behaviour. For example, i

keeps track of the messages recently forwarded by j and of those that j ignored,
of the list of j’s friends and foes, the balance between the services provided
and requested to j (credits), etc. We denote, for example, friendsj

i as the list of
friends advertised by j and stored by i.

Note that, in our protocol, it is acceptable for participants to have some foes.
It is up to the community to evaluate if the number of foes a given node declares
reaches an unacceptable level of selfishness. The information stored in these
variables allows each node to keep track of recent behaviour of its neighbours,
detecting misbehaviour and improving the trust on those that are more cooper-
ative. Each node widely advertises its opinion on each other node to accelerate
the detection and punishment of selfish nodes.

4.1 Execution Scenarios

We now illustrate the operation of the algorithm in some concrete scenarios. Due
to the lack of space, only the most representative cases are presented.

All Cooperative Nodes, Lightly Loaded Network This is the most
favourable scenario. Nodes will broadcast periodically one SelfState message,
where the fields foesi and selfishi will be empty. The overhead introduced by the
protocol is minimal: the periodic broadcast of one message.

All Cooperative Nodes, Unbalanced Load Network The nodes that
have been more loaded by requests from others will start to move some of the
nodes from the friendsi to the foesi set. One can envision several criteria for
the selection, using for example statistical information about the number of
hops toward the usual destination of the messages of each node, or the number
of credits. To preserve network connectivity, it is important that two or more

loaded nodes attempt to define disjoint foes i sets. Note that well-behaved nodes
should keep providing services to peers, even if these peers consider them as foes.

One Selfish Node Selfish nodes are always penalised, whether they run the
protocol or not, because the decision is taken locally at each node based on the
information provided by its peers. When a node j refuses to forward messages,
its address will be included in the selfishi set of the SelfState messages of the
other nodes. Nodes listening to these messages will start to remove the entries

from friendsj
i and placing them in foesj

i . Whenever the rate
|friendsj

i
|

|friendsj

i
|+|foesj

i
|

goes bellow some threshold, node i will begin to mark j as selfish and reciprocally
become its foe. Eventually, j will have all other nodes to refuse its messages.

Malicious Selfish Node Malicious nodes will attempt to hide its selfishness
from the remaining participants. Classifying a node as selfish is an operation local
to each protocol based on the following conditions: i) it exhausted the credits
limit or ii) it refused to forward messages to some nodes.

The protocol provides enough information to let each node to detect the
envisioned attacks. A malicious node could try to defeat the system using one
of the following methods: i) by declaring to be friend to a large number of
fake nodes or; ii) by omitting to be foe of some nodes. Fake nodes are ignored
when each node accounts for the number of nodes that each peer is serving,
so the node gain no advantage from advertising dummy friends. Note that the
limited transmission range of the network devices will make some nodes mark
correct addresses as invalid, so their existence cannot be considered an attempt
to subvert the protocol. Additionally, nodes can not hide their selfishness because
information about the nodes known by each other node is crossed: if some node
i mentions some other node j in its SelfState message, and j omits i in its
own message, then it is assumed that j is selfish for i.

Malicious nodes may also attempt to corrupt the MANET by falsely declaring
other nodes as foes. However, in order to consider j as selfish, correct node i will
use the information provided by all of i’s neighbours. If the malicious node acts
alone, its information will not be sufficient to achieve its goal.

The definition of a proper rate threshold must be subject to further study
and may vary depending on the density of the nodes in the MANET area.

5 Conclusions and Future Work

The generalisation of wireless devices will soon turn MANETs into one of the
most important connection methods to the Internet. However, the lack of a
common goal in MANETs without a centralised human authority will make
them difficult to maintain: each user will attempt to retrieve the most of the
network while expecting to pay as less as possible. In human communities, this
kind of behaviour is called selfishness. While prohibiting selfishness shows to
be impossible over a decentralised network, applying punishments to those that
present this behaviour may be beneficial.

On the other hand, protocols need to consider the fair division of the tasks
to balance energy consumption among the participants. In Open MANETs un-

fairness is likely to promote selfish behaviour if users notice that their devices
are being excessively used when compared with other participants. It should be
noted that this is not an issue exclusive of routing: decisions on the location of
services, for example, should take into account the node’s past history.

This paper surveyed recent results on two complementary mechanisms pro-
viding more adequate conditions for the wide generalisation of Open MANETs.
A fairness monitoring service provides the means for nodes to leverage its ef-
fort with those of the remaining participants. A selfishness detection mechanism
monitors the network to detect misbehaving nodes.

As future work, we expect to combine both mechanisms and apply them in
protocols at different levels of the networking stack. Good candidates for the
applications of both services are routing and group communication protocols.

References

1. Adar, E., Huberman, B.A.: Free riding on gnutella. First Monday 5(10) (2000)
2. Miranda, H., Rodrigues, L.: Friends and foes: Preventing selfishness in open mobile

ad hoc networks. In: Proc. of the Int’l Workshop on Mobile Distributed Computing
(MDC’03), in conjunction with ICDCS’2003, IEEE (2003) 440–445

3. Miranda, H., Rodrigues, L.: Using a fairness monitoring service to improve load-
balancing in DSR. In: Proc. of the 1st Int’l Workshop on Services and Infras-
tructure for the Ubiquitous and Mobile Internet (SIUMI’05), in conjunction with
ICDCS’2005. (2005) 314–320

4. Buttyán, L., Hubaux, J.P.: Enforcing service availability in mobile ad-hoc WANs.
In: Proc. of the 1st IEEE/ACM Work. on Mobile Ad Hoc Networking and Com-
puting (MobiHOC). (2000)

5. Boukerche, A., El-Khatib, K., Xu, L., Korba, L.: Anonymity enabling scheme
for wireless ad hoc networks. In: Workshops of the Global Telecommunications
Conference, GlobeCom 2004, IEEE (2004) 136–140

6. Buchegger, S., Le Boudec, J.Y.: Nodes bearing grudges: towards routing security,
fairness, and robustness in mobile ad hoc networks. In: Proc. of the 10th Euromicro
Workshop on Parallel, Distributed and Network-based Processing. (2002) 403–410

7. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: Proc. of Mobicom 2000. (2000)

8. Toh, C.K.: Associativity-based routing for ad hoc mobile networks. Wireless
Personal Communications 4(2) (1997) 103–139

9. Lee, S.J., Gerla, M.: Dynamic load-aware routing in ad hoc networks. In: Proc. of
the IEEE Int’l Conf. on Communications (ICC 2001). Volume 10. (2001) 3206–3210

10. Lee, S.B., Cho, J., Campbell, A.T.: A hotspot mitigation protocol for ad hoc
networks. Ad Hoc Networks 1(1) (2003) 87–106

11. Hu, Y.C., Johnson, D.B.: Exploiting congestion information in network and higher
layer protocols in multihop wireless ad hoc networks. In: Proc. of the 24th Int’l
Conf. on Distributed Computing Systems (ICDCS’04). (2004) 301–310

12. Johnson, D., Maltz, D., Broch, J.: DSR: The Dynamic Source Routing Protocol for
Multi-Hop Wireless Ad Hoc Networks. In: Ad Hoc Networking. Addison-Wesley
(2001) 139–172

13. Johnson, D.B., Maltz, D.A., Hu, Y.C.: The dynamic source routing protocol for
mobile ad hoc networks (DSR). Internet draft, IETF MANET WG (2004)

