Preventing selfishness in open mobile ad hoc networks

Hugo Miranda

Abstract

Mobile ad hoc networks are a new and challenging
topic on mobile computing. A particular character-
istic of ad hoc networks is their self-organization,
what makes them highly dependable of the partic-
ipants. Until recently, it was assumed that these
networks would be composed of cooperative hosts,
where their owners share a common goal. How-
ever, this assumption will probably be dropped
due to the generalization of computers equipped
with wireless network devices. This position paper
shows how the selfishness of the participants in a
ad hoc network can prejudice its overall functioning
and sketches a protocol that discourages this kind
of behavior.

1 Introduction

The research effort on mobile networks (infra-
structured or ad hoc) has focused mainly on rout-
ing and usually assumes that all nodes are coopera-
tive. These assumptions hold on military, or search
and rescue operations, where all hosts belong to
the same authority and their users share the same
goals. The application of mobile ad hoc networks
(MANETS) for the support of open communities
has emerged recently. In such environment, differ-
ent users, with different goals, share the resources
of their devices, ensuring global connectivity. This
sort of communities can already be found in wired
networks, namely on peer-to-peer networks.

However, there is a significant difference between
the fixed and the mobile environment. Some re-
sources, namely battery power, are scarce in a mo-
bile environment and can be depleted at fast pace
with the device utilization. This can lead to a self-
ish behavior of the device’ owner, that may attempt
to take the benefit from the resources provided by
the other nodes without, in return, making avail-
able the resources of his own devices.

Luis Rodrigues

In this scenario, open MANETSs will likely resem-
ble social environments. A group of persons can
provide benefits to each of its members as long as
everyone provides his contribution. For our partic-
ular case, each member of a MANET will be called
to forward messages and to participate on routing
protocols. A selfish behavior threatens the entire
community. Optimal paths may not be available.
As a response, other nodes may also start to behave
in the same way. In the extreme, this can take to
the complete decoupling of the network. This kind
of problems was already noticed on peer-to-peer file
distribution systems. It was observed in Gnutella
that the number of sites providing valuable content
to the network was a small part of the number of
users retrieving information [1].

To provide the expected service, open MANETSs
should implement a protocol that discourages the
selfish behavior. The protocol should apply some
kind of penalty to the users that intentionally
present selfish behavior and be tolerant to mali-
cious attacks and to communication failures, that
could penalize well-behaved hosts.

This paper is organized as follows. Section 2
presents a possible scenario that motivates the need
of selfishness prevention protocols. Section 3 pro-
vides an overview of previous work realized on the
subject. One protocol extending previous ones is
presented on section 4. The future work and the
conclusions are presented in section 5.

2 Motivation

Picture yourself in a conference room. The talk
goes boring and you think that this is the perfect
time for checking your e-mail using your new lap-
top with a 802.11 network card. The conference is
hosting an Internet room holding a wireless base
station. However, the room is too far from your
current location and you are out of range. Your
opinion about the speaker is shared by the major-



ity of the audience and you notice that a few more
laptops are being opened. Some of them really close
to the door. You are sure that they are within the
base station range. Suddenly, your desktop shows
that an ad hoc network has been established and
you have Internet access.

Your MANET utility application lets you know
that you can reach two hosts within the wireless
base station range and you start retrieving your e-
mail. In the middle of the download you notice
that the available bandwidth has decreased and a
few moments latter you are unable to reach your e-
mail server. However, your utility application keeps
showing that those two nodes are active.

You lost connectivity when one of those nodes
found that the battery power of his laptop and
some of the available bandwidth was being used
for forwarding your (and others) messages. When
your laptop stopped receiving acknowledgments, it
started a new routing protocol round that led him
to the second computer. The user of this computer
noticed a huge increase on the number of forwarded
messages and, to prevent himself from depleting his
battery, also ceased to forward messages on behalf
of the other users. Because one of the users of the
MANET was selfish, you have now the opportu-
nity to get the most of the boring talk! Probably,
next time you will apply the same policy to anyone
attempting to use your network card.

As previously mentioned, MANET'Ss where envi-
sioned for search-and-rescue, military and law en-
forcement operations. In these examples, all users
work together toward a common goal. There-
fore, selfishness behavior is not expected since
it would only prejudice the group. We envision
that MANETSs will rapidly expand to other do-
mains, like the one presented above. In these Open
MANETS, users do not share a common goal. Each
user will agree to share his resources only if this
brings him some benefit and not to the group as in
Closed MANETS.

While being impossible to forbid selfish behavior,
Open MANETS users should be discouraged to do
it. This can only be achieved by applying some kind
of penalty to users. The following section shows
some proposals toward this goal.

3 Related work

Malicious networks nodes that participate in rout-
ing protocols but refuse to forward messages may
corrupt a MANET. These problems can be cir-
cumvented by implementing a reputation system.
In [5], the reputation system is used to instruct
correct nodes of those that should be avoided in
message’s routes. However, as is, the system re-
wards selfish nodes, who benefit from not forward-
ing messages while being able to use the network.

On modern society, services are usually pro-
vided in exchange of an amount of money, pre-
viously agreed between both parts. The Termin-
odes project defined a virtual currency named beans
used by nodes to pay for the messages. Those beans
would be distributed by the intermediary nodes
that forwarded the message [3, 4]. Implementations
of digital cash systems supporting fraud detection
require several different participants and the ex-
change of a significant number of messages [6].
To reduce this overhead, Terminodes assumes that
hosts are equipped with a tamper resistant security
module, responsible for all the operations over the
beans counter, that would refuse to forward mes-
sages whenever the number of beans available are
not sufficient to pay for the service. The modules
use a Public Key Infrastructure (PKI) to ensure
the authentication of the tamper resistant modules.
This infrastructure can be used with two billing
models. In the Packet Purse Model, the sender
pays to every intermediary node for the message,
while in the Packet Trade Model is the receiver that
is charged. In both models, hosts are charged as a
function of the number of hops traveled by the mes-
sage.

The CONFIDANT protocol [2] implements a
reputation system for the members of MANETS.
Nodes with a bad reputation may see their requests
ignored by the remaining participant, this way ex-
cluding them from the network. When compared
with the previous system, CONFIDANT shows two
interesting advantages. It does not require any spe-
cial hardware and avoids the “self-inflicted punish-
ment” that could be the exploitation point for ma-
licious users. The system tolerates certain kinds of
attacks by being suspicious on the incoming selfish-
ness alerts that other nodes broadcast and relying
mostly on its self experience.

These systems show two approaches that con-



flict in several aspects. The number of requests
received by hosts depends of their geographical po-
sition. Hosts may become overloaded with requests
because they are positioned in a strategical point in
the MANET. A well-behaved node that temporar-
ily supports a huge amount of requests should lat-
ter be rewarded by this service. CONFIDANT has
no memory, in the sense that the services provided
by some host are quickly forgotten by the reputa-
tion system. On the other hand, beans can be kept
indefinitely by hosts. In MANETS, it is expected
that hosts move frequently, therefore changing the
network topology. The number of hops that a mes-
sage must travel is a function based on the instant
position of the sender and the receiver and varies
with time. Terminodes charges the sender or the
receiver of a message based on the number of hops
traveled what may seems unfair since any of them
will pay based on a factor that is outside his con-
trol.

4 The protocol

People tend to cooperate as long as they notice that
there is a fair division of the tasks in a group. This
problem is extended for MANETSs where the un-
fairness of the service division may prevent users
from using their own devices. Beside punishment,
selfishness prevention protocols must perform an
equally important role in the fair distribution of ser-
vices by the overall community what is not guaran-
teed by all routing protocols. This can be achieved
if hosts are allowed to present some “justified self-
ishness”, by refusing part of the requests received,
forcing the clients to search for alternatives.

Under some circumstances, like when two device’
owners in a MANET are friends or when the net-
work administrator attempts to send a message,
selfishness may be acceptable. In the first case one
host is willing to provide unlimited services to an-
other but this is orthogonal to the community. The
second shows one case of MANET acceptable self-
ishness.

This section presents a new selfishness preven-
tion protocol. The protocol shares some of the
properties of both protocols previously described:
it presents a long time memory that allows hosts
to be rewarded by services provided in the past
and does not charge by the number of hops used.

On the other hand, the protocol introduces some
new concepts by tolerating justified selfishness and
by encompassing trapdoors toward socially accept-
able selfishness. The protocol uses only one mes-
sage, that each host periodically broadcasts and al-
lows that hosts not running it participate in the
MANET.

4.1 System model

In the exposition of the algorithm, every node is
assumed to have the same transmission power and
is equipped with an omni-directional antenna. Like
in other broadcast mediums, hosts are able to listen
to messages that are not addressed to him. Each
host has a unique network address which can not
be changed and is included in the messages that he
sends.

In order for the protocol to behave correctly two
conditions are required: ¢) at least one route com-
posed of only well-behaved nodes must exist be-
tween any two well-behaved nodes and i) selfish
nodes do not cooperate between themselves. Re-
moving these constraints is an open issue that will
be addressed in the future.

4.2 The algorithm

Outline The algorithm is based on a message
that each node broadcasts periodically stating its
view about the neighborhood. The message ex-
poses a sufficient amount of information that al-
lows the remaining nodes to detect a liar, this way
defeating possible attacks.

The protocol introduces the fairness concept by
allowing hosts to publicly declare that they refuse
to forward messages to some hosts. It is up to the
community to evaluate if the proportion of refused
hosts reaches an unacceptable level of selfishness.

Data structures For each host ¢, each other
host p will keep a data structure status,[q] with
the following fields:

credits a signed integer increased for each message
that p forwarded on behalf of ¢ and decreased
for each message that ¢ sent on behalf of p.
The initial value is 0.

maxCredits the upper bound to credits.



state One of the following constants: OK, SUS-
PECTED, OTHERS_SUSPECTED and SELF-
ISH. The initial state of each new node is OK.
A correct node p should continue to provide
services to a node ¢ in the SELFISH state as
long as statuspy[g].credits < 0.

notSelfishTo The list of hosts for which ¢ is will-
ing to provide services. This list is initialized
with every node known by p;

selfishTo The list of hosts known by ¢ to whom
he is not willing to provide services. This list
is empty when initialized.

dead an unsigned integer that will be set to zero
whenever a message is listen from ¢g. Period-
ically, a timer will increase this value. If it
reaches some threshold, one can consider that
the node is no longer in the neighborhood.

Each node participating in the algorithm will
also keep two separate lists amSelfishTo and amNot-
SelfishTo where he keeps respectively the addresses
of the hosts from whom he refuses to forward mes-
sages and of those that he will forward messages.
The list pending_messages keeps the set of messages
forwarded to other nodes and that are waiting to
be acknowledged. Hosts also keep an integer vari-
able Sc with the sum of the credit fields of all their
status structures.

Each host p periodically broadcast a selfState
message with the following fields:

notSelfishTo The list of hosts from whom p will
accept service requests;

selfishTo The list of hosts to whom p will refuse
to provide services;

knownSelfishNodes A list of nodes that p con-
siders to be selfish but whose declarations of
selfishTo omitted p;

Messages handling

Service request Whenever host p receives a
message m from ¢, p will see if it is the final
destination for m. If not, and ¢ is not in the
p.amSelfishTo list, p peeks the next host r such
that statusp[r].state # SELFISH and r is in a
path toward m’s destination. m is sent to r and

statusp|q).credits is incremented. The tuple (r,m)
is added to pending_messages.

A selfState message will be sent if ¢ is on the
p.amSelfishTo list or if status,lq].credits >
statusy[q].mazCredits. In any case,
statusy|q].dead is reseted.

Message received If host p listens to a mes-
sage issued by some other node ¢ it will check if
(¢g,m) is in pending_messages. This will be used
as a confirmation that ¢ did not become self-
ish. (g,m) is removed from pending-messages and
status,|q].credits is decreased. Otherwise, p will
check if a data structure for ¢ is already defined
and create one if not. In any case, statusy|q].dead
is reseted.

selfState message received Whenever host p
receives a selfState message from host ¢ it will reset
the statusy[q].dead variable and proceed to observe
every field of the message.

notSelfishTo/selfishTo is used to replace the in-
formation in the local statusy[q] structure.
Unknown nodes are discarded. p checks the list
where it is included, updating status,|q].state
accordingly.

knownSelfishNodes is used by ¢ to alert its neigh-
bors of the hosts that have refused to pro-
vide him services while declaring to be not
selfish for q. For each node r in the list, p
should move ¢ from statusy[r].notSel fishTo
to statusy(r].sel fishTo. If statusy[r|.state =
OK, its state should be changed to OTH-
ERS_SUSPECTED. The host should ignore un-
known addresses in this field.

If p is in knownSelfishNodes but ¢ is not
in p.amSelfishTo, this may suggest a mali-
cious attack from ¢. ¢ should be added to
p.amSel fishTo and status,|qg].state should be
changed to SELFISH. The next selfState
message broadcasted by p should include ¢ in
the knownSelfishNodes field.

4.3 Execution scenarios

The goal of this section is to show the overall appli-
cation of the protocol in several different cases. Due
to the lack of space, some cases have been omitted.



All cooperative hosts, lightly loaded network
This is the most favorable scenario. Sc will be near
zero for all participants. In this case, hosts will
broadcast periodically one selfState message, where
the fields selfishTo and knownSelfishNodes will be
empty. The overhead introduced by the protocol
is the periodic broadcast of one message. The case
where some hosts do not implement the protocol is
handled transparently: they will ignore the content
of these messages. The nodes that are running the
protocol will create a status structure for them, that
will be mostly kept with the default values.

All cooperative hosts, heavily loaded net-
work Starting from the previous example, Sc will
become excessively positive for some hosts and ex-
cessively negative for others. Those that have been
more loaded by requests from other hosts will start
to move some of the nodes from the notSelfishTo to
the selfishTo list. One can envision several criteria
for the selection, using for example statistical infor-
mation about the number of hops toward the usual
destination of the messages of each host, or the
number of negative credits. To keep network func-
tionality, it is important that two or more loaded
hosts attempt to define disjoint selfishTo lists. Note
that well-behaved nodes should accept their move-
ments to these lists and continue to provide services
as long as their credits with the loaded hosts remain
negative.

Nodes not running the protocol that are placed
in selfishTo lists will start to notice that their mes-
sages are not being delivered. Their reaction to
this event will depend on several factors, for exam-
ple the routing protocol being used.

One selfish node Selfish nodes are always penal-
ized, whether they run the protocol or not, because
the decision is taken locally at each node based
on the information provided by its pairs. When
a host ¢ refuses to forward messages, its address
will be included in the knownSelfishNodes list of
the selfState messages of the other hosts. Hosts
listening to these messages will start to remove
the entries from status,|g].notSel fishTo and plac-

ing them in statusy|q].sel fishTo. Whenever the
fstatusy[g].notSel fishTo

fstatusy[q].notSel fishTo+fstatusy|q).sel fishTo goes

bellow some threshold, hosts will begin to set

statusy|q].state = SELFISH. Eventually, ¢ will

rate

exhaust its credits with every host running the pro-
tocol and will have its messages refused.
Previously selfish nodes may be reintegrated in
the group by broadcasting a new selfState message
with some hosts in the notSelfishTo list. To prevent
repetitive behavior, non-selfish hosts may reduce
maxCredits for the host. One alternative procedure,
which also allows the reintegration of hosts not run-
ning the protocol is to become silent for a sufficient
period of time so that their records can be erased
by having the dead counter to reach the threshold.

Malicious selfish host In order to attempt to
subvert the system, one malicious user must always
have knowledge of the protocol. Changing the state
of an host to SELFISH is an operation local to each
protocol based on the following conditions: ) it ex-
hausted the credits limit; i) it refused to forward
messages to some other host and #ii) it was con-
sidered selfish by a sufficient number of hosts. The
number of credits is a variable local to each host.
Preventing one host from maliciously changing this
value lies on the broader problem of computer se-
curity and is out of the scope of this paper.

The only possible attempt to subvert the proto-
col would be to fake the number of host that he is
serving, by placing non-used addresses or by falsely
declaring some existing hosts on the notSelfishTo
field of its selfState messages. This would allow him
to fool hosts that are not requesting services, post-
poning (possibly indefinitely) the problem of the
credit exhaustion. These two possible turnarounds
are separately handled in the protocol. Unknown
addresses are ignored when each host accounts for
the number of hosts that the nodes are serving, so
the host has no advantage on providing this infor-
mation. Declaring to be available to provide ser-
vices to some hosts (that is, placing their address in
the notSelfishTo field) will make these nodes to re-
quest him to forward messages. If he refuses, hosts
will start to place the malicious host address in the
knownSelfishNodes field which in turn, will make
its rate of serving hosts lower, eventually (when a
sufficient number of nodes detects the fraud) bel-
low the acceptable threshold for the hosts to con-
sider him selfish. Note that invalid addresses are
expected due to the limited transmission range of
the network devices and can not, by themselves,
be considered an attempt to subvert the protocol.



The definition of a proper threshold must be sub-
ject of further study and may vary depending on
the density of the nodes in the MANET area.

4.4 Other considerations

Node movement MANETSs expect their hosts
to move frequently, changing the network topology.
When moving, one host may become outside the
range of another. Even in the presence of pend-
ing messages, the protocol does not falsely consider
these hosts as selfish thanks to the dead timer that
will erase all the information of the host if no mes-
sages are heard from him for some period of time.

Socially acceptable selfishness The two cate-
gories of socially acceptable selfishness presented
above are handled differently by the protocol.
Friendship can be tolerated by instructing nodes to
never declare some address to be selfish. This way,
even when the remaining members of the commu-
nity start to declare the host has selfish, he will
always be able to forward messages to that one.
Note that the friends of a selfish node must still
be able to request services from other nodes, and
are accountable by the credits that should be payed
for the service. MANET acceptable selfishness can
be implemented with a Private Key Infrastructure
where the certification authority makes available
the public key of the hosts that can use the net-
work without restrictions. All messages from that
host should be signed and no credits accountability
should be imposed to intermediary nodes.

5 Conclusions and future

work

MANETSs are particularly sensible to unexpected
behaviors. The generalization of wireless devices
will soon turn MANETS in one of the most impor-
tant connection methods to the Internet. However,
the lack of a common goal in MANETS without a
centralized human authority will make them diffi-
cult to maintain: each user will attempt to retrieve
the most of the network while expecting to pay as
less as possible. In human communities, this kind
of behavior is called selfishness. While prohibiting
selfishness shows to be impossible over a decentral-

ized network, applying punishments to those that
present this behavior may be beneficial.

This position paper outlined a selfishness preven-
tion protocol for Open MANETSs. The protocol
shows some novelties: its decentralization avoids
the usage of complex payment systems and it in-
troduces the concept of “justified selfishness” that
makes the whole system more fair, not penalizing
users by their network topological location. This
work is on its early stages of development and lacks
theoretical and experimental validation. Future
work includes an experimental evaluation over a
network simulator, where different topologies and
host movements will be tested. Its integration with
routing protocols may also shows to be beneficial.

References

[1] E. Adar and B. Huberman. Free riding on
gnutella. First Monday, 5(10), October 2000.

[2] S.Buchegger and J.-Y. Le Boudec. Performance
analysis of the CONFIDANT protocol: Cooper-
ation Of Nodes - Fairness In Distributed Ad-hoc
NeTworks. Technical Report 1C/2002/01, Swiss
Federal Institute of Technology, Lausanne, Jan-
uary 2002.

[3] L. Buttyan and J. Hubaux. Enforcing service
availability in mobile ad-hoc wans. In Proc. of
the First IEEE/ACM Workshop on Mobile Ad
Hoc Networking and Computing (MobiHOC),
Boston, MA, USA, August 2000.

[4] L. Buttydan and J. Hubaux. Stimulating co-
operation in self-organizing mobile ad hoc net-
works. Technical Report DSC/2001/046, Swiss
Federal Institute of Technology, Lausanne, Au-
gust 2001.

[5] S. Marti, T. Giuli, K. Lai, and M. Baker. Mit-
igating routing misbehavior in mobile ad hoc
networks. In Proceedings of Mobicom 2000,
Boston, USA, August 2000.

[6] P. Verissimo and L. Rodrigues. Distributed Sys-
tems for System Architects, volume 1 of Ad-
vances in Distributed Computing and Middle-
ware. Kluwer Academic Publishers, Boston,
January 2001.



