
Appia, a flexible protocol kernel supporting
multiple coordinated channels∗

Hugo Miranda Alexandre Pinto Lúıs Rodrigues
Universidade de Lisboa, FCUL

Campo Grande 1749-016 Lisboa Portugal
{hmiranda,apinto,ler}@di.fc.ul.pt

Abstract

Distributed applications are becoming increasingly complex, often
requiring the simultaneous use of several communication channels with
different qualities-of-service. This paper presents the Appia system, a
protocol kernel that supports applications requiring multiple coordi-
nated channels. Appia offers a clean and elegant way for the appli-
cation to express inter-channel constraints, such as, for instance, that
all channels should provide consistent information about the failures
of remote nodes. These constraints can be implemented as protocol
layers that can be dynamically combined with other protocol layers.

1 Introduction

Distributed applications are becoming increasingly complex, offering rich
and powerful services to their users. In order to offer satisfactory per-
formance, these applications are also becoming increasingly demanding in
terms of communication support. It is easy to find applications that require
the simultaneous use of several communication channels, such as virtual en-
vironments, distributed simulation and computer supported collaborative
work (CSCW).

One particularity of these applications is the need to exchange and dis-
seminate several kinds of data, each with different quality-of-service require-
ments. Text messages or blocks in a file transfer, for example, are expected

∗This work was partially supported by Praxis/C/EEI/12202/1998, TOPCOM. Selected
portions of this report were published in the Proceedings of the 21st International Confer-
ence on Distributed Computing Systems (ICDCS-21) April 16-19, 2001. Phoenix, Arizona,
USA (Poster session).

to be reliably delivered in FIFO order while in video streams some packets
can be lost. As a result, these applications tend to rely on the use of mul-
tiple communication channels. It is easy to find communication substrates
that support the use of several independent channels. However, in multi-
channel applications there are often inter-channel constraints that need to
be preserved to simplify the application logic. For instance, one may need
to enforce FIFO, causal or total order constraints across channels, to cipher
data in different channels using the same session key, or to ensure that consis-
tent failure detection information is provided to all channels. If the protocol
kernel does not provide any support for coordination among channels, this
burden is left to the application designer.

This paper presents Appia 1, a protocol kernel that offers a clean and
elegant way for the application to express inter-channel constraints. This
feature is obtained as an extension to the functionality provided by current
systems. Thus, Appia retains the flexible and modular design that has
previously proven to be advantageous, allowing communication stacks to be
composed and reconfigured in run-time.

The paper is organized as follows. Section 2 presents several examples
that motivate our work. Section 3 describes the innovative aspects of Appia.
Section 4 describes the Appia implementation and Section 5 presents early
performance results from a prototype written in Java. Section 6 concludes
the paper.

2 Motivation

A protocol kernel is a software package that supports the composition and
execution of micro-protocols. In terms of protocol design, the protocol kernel
provides the tools that allow the application designer to compose stacks
of protocols according to the application needs. In run-time the protocol
kernel supports the exchange of data and control information between layers
and provides a number of auxiliary services such as timer management and
memory management for message buffers.

The x-Kernel [5] is an early and influential work on protocol composition.
Protocols interact through generic push and pop primitives that allow layers
to be implemented with independence from each other. After x-Kernel,
several systems have proposed different models of binding layers to stacks
and of supporting event propagation. In Ensemble [4] and Coyote [1] events

1Via Appia was one of the most important roads of the Roman Empire.

2

Figure 1: A multimedia stack with diamond shape

are data structures that are routed from one layer to the next by a specialized
event scheduler.

Much emphasis has been put on the flexibility of protocol composition
and on the efficiency of the event propagation mechanisms. Horus [8] and
Ensemble [4] are protocol kernels designed to support group communication.
They propose a strictly vertical stack composition where events must cross
all the layers from the stack. Both frameworks predefine a fixed set of events
whose semantics is well known. For efficiency reasons, Horus and Ensemble
define particular exceptions to the strictly vertical model. For particular sets
of events and stack configurations, Horus allows some layers to be bypassed
using the fast protocol [7]. On the other hand, in Coyote [1] micro-protocols
are able to register the events they are interested in. This allows composing
protocols in a manner that is not strictly vertical and also prevents layers
from processing unnecessary events.

All these frameworks allow the application to define and use different
communication channels, but they do not provide explicit support to enforce
inter-channel constraints. The need for coordination among different chan-
nels used by the same application has been recognized in at least two existing
frameworks: the Collaborative Computing Transport Layer (CCTL) [6] and
Maestro [2]. CCTL uses a control channel to coordinate data channels that
may have weak reliability and ordering constraints. Maestro is a group man-
ager for protocol stacks. The base of Maestro is a core Ensemble stack that

3

handles membership procedures for the data stacks. Maestro’s data stacks
can be created using a wide set of components, including UDP sockets, and
CCTL or other Ensemble stacks.

Both frameworks are tied to specific inter-channel constraints, such as
membership synchronization across several channels, and do not provide the
appropriate interface to allow programmers to express alternative forms of
coordination. We now present an example of coordination requirements that
are not adequately addressed by previous protocol kernels.

Synchronized streams with different QoS To support interaction, a
multimedia application opens different communication channels, one for each
type of media (namely audio, video and text). These streams require dif-
ferent transport protocols, thus different communication stacks are used.
However, all streams need to be synchronized. To achieve this goal, an
inter-stream synchronization layer can be used as proposed in [3]. Another
problem of using different stacks is that failures can be detected in a non-
consistent way by the protocols in each stack.

An elegant solution based on protocol composition could use the stack of
Figure 1. This approach consists of having a common failure detection layer
at the bottom of each stream and a synchronization layer in the upper layers.
The combination of the several “paths” creates a “diamond” structure.

Although the main goal of Appia is to provide the mechanisms that
simplify the task of expressing and implementing inter-channel constraints,
the system retains the flexibility of systems such as Ensemble and Coyote.
In the following section we describe the Appia system.

3 The Appia System

Appia clearly separates the static and dynamic aspects of protocol compo-
sitions. Static aspects are used to model Qualities of Service and dynamic
aspects are related with the implementation of these QoSs. Both aspects are
present when new protocols are created and when protocols are combined
to implement communication channels. This section explains how the above
concepts interact to support inter-channel coordination.

We define a layer as the representative of a micro-protocol. Micro-
protocols exchange information using events. All protocols implement the
same event interface. The format and semantics of these events will be
presented latter in this paper.

We define a session as an instance of a micro-protocol [5]. The session

4

maintains state variables used to process events. A session implementing an
ordering protocol may maintain a sequence number or a vector clock as part
of its state.

Layers and sessions can be combined to satisfy inter-channel coordination
requirements as follows. A QoS is defined as a stack of layers. The QoS
specifies which protocols must act on the messages and the order they must
be traversed thus defining a quality of service by enumerating the properties
it will provide. A channel is an instantiation of a QoS and is characterized
by a stack of sessions of the corresponding layers. Sessions may be shared
by more than one channel. Events exchanged between two sessions are
delivered respecting FIFO order. A stack interfaces a given communication
media through a device protocol. This is just an abstraction of any protocol
outside the control of our communication kernel (for instance, TCP or UDP).

3.1 Model

The model honors the distinction between the properties of a stack, cap-
tured by the QoS concept and each specific instance of a given QoS, the
channel. Data flows through specific channels. In many systems, message
processing requires every layer to perform a local demultiplexing operation
to retrieve the appropriate session context. In Appia, like in Ensemble, the
demultiplexing is performed only once, when messages enter the system and
the target channel is retrieved. However, Ensemble uses kernel functions
to retrieve messages from the network and to find the appropriate chan-
nel. Appia makes the model more flexible by delegating on protocols both
operations.

Upon creation, a channel is as an array of “typed empty slots”. Each of
these slots must be filled with a session of the layer specified in the QoS for
that position. Sessions can be bound to the slots explicitly or implicitly by
other sessions (automatic binding). By default, new sessions will be bound
to the remaining slots.

Using explicit binding it is possible to associate specific sessions to spe-
cific channels. These sessions may either be already in use by other channels
or may be intentionally created for the new channel. Explicit binding enables
the user to have fine control over the channel configuration. For instance,
on our example, a single session of the IntermediaSync layer should be
explicitly bound to all channels.

Using automatic binding it is possible to delegate on already bound ses-
sions the task of specifying the remaining sessions for the channel. Typically,
a mixture of explicit and automatic binding is used.

5

In Appia, inter-channel coordination can be achieved by letting different
channels share one or more common sessions.

3.2 Configuration capabilities

A protocol is defined as channel-aware if its algorithm recognizes and acts
differently upon reception of events flowing on different channels. As noted
before, it is desirable to have the Failure Detector protocol to be channel-
unaware, while Intermedia Sync is, by definition, channel-aware (it selects
the desired Quality of Service for message sending). Protocol reusability
would be limited in Appia if channel-awareness was mandatory.

However, it is possible to create protocols that are oblivious to the num-
ber of channels that traverse their sessions. A channel identifier cid is pre-
sented to sessions on every event delivery. This value can be considered
opaque by the session. If a new event is generated in response to a given in-
coming event (for instance a reply), the session should propagate the opaque
cid value associated with the original event. Many of the sessions that can
be found in existing stacks are channel-unaware.

Channel-awareness allows greater configurability possibilities. Sessions
can use the channel information to learn the available QoSs and then choose
which channel to use for their own events.

3.3 Events

Some frameworks support only a pre-defined set of events. The knowledge
of the semantic of each event is then used to implement event-specific op-
timizations. We say that these frameworks support a closed event model.
Closed models are very difficult to apply in different contexts since they
only support a fixed set of interactions: the pre-defined set of events may
not be enough to express, in an efficient manner, interactions required in
other protocols. A framework that uses an open model, allows new events
to be defined. Naturally, it is harder to implement optimizations in event
routing when the set of events is unknown a priori. The model presented
here tries to merge the advantages of a closed model with the flexibility of
an open one.

Events in Appia are object oriented data structures. New events can
be created by deriving from a previously defined event class (in particular,
directly from the main event class). In order to allow future event refine-
ment, tests on the event type are always performed on the weakest class
satisfying the desired requisites. The goal is to enforce event specialization

6

using inheritance. This way, legacy protocols, unaware of the new event
attributes, will continue to execute correctly. As in Ensemble [4], sessions
only interact with the environment by events. Conceptually, the channel is
positioned bellow the lowest session on the stack and above the upper one.

3.4 Run-time compatibility check

At QoS definition time, layers are requested to declare three event-related
sets: Ψl containing the events that layer-l requires to provide a correct
execution; Φl containing the events that layer-l is willing to receive and Γl
containing the events that layer-l will generate.

A correct stack is one having every element of Ψ in Γ (Ψ and Γ are
respectively the union of all Ψl and Γl sets on the stack). QoS definitions
not respecting the above constraints will return an error and will not be
created. For sanity, it is expected that for every set Φl,Ψl ⊆ Φl.

Although this is not a complete stack validation tool, the model improves
previous frameworks in this respect. By using the functional features of the
ML language to validate the correct execution of a stack, Ensemble [4] takes
a stronger approach to the problem. Appia simply performs a run-time check
of the composition, assuming: 1) that the protocols were coded correctly and
2) the semantic of the events is well known.

3.5 Efficient event routing

Under normal execution, only a few protocols add valuable information to
messages [1, 8, 4]. For example, in a group communication stack not every
protocol is interested in receiving view change information. Horus’s fast
protocol bypasses a predefined set of layers under specific conditions. Our
approach allows layers to explicitly state the events their protocols are in-
terested in.

The event sets specified at QoS definition time are used for optimizing
execution in run-time in the following way. For each event e ∈ Γ, an ordered
set of layers will be constructed containing those that mentioned event e in
their Φ set. Upon channel creation, this event routing tables will be ported
to the channel. This operation will map QoS layers on instantiated sessions.

Event routing is static for each channel. On event arrival, the event table
defined for its type at the target channel is associated with the event. Thus,
an event is able to find the next session to be visited by simply keeping a
pointer to an array. In Appia, most of event routing overhead is clearly
pushed to QoS definition time, which is expected to happen at application

7

startup. Using this approach, the introduced flexibility does not compromise
run-time performance.

4 Implementation

Appia is being developed in Java.2 Thus, inheritance can be extensively
used to refine and specialize the main Appia components. The following
classes represent the main components of the framework.

Events Events make extensive use of inheritance. The basic Event class
is extended by the kernel in two different branches: events to be sent to the
network (class SendableEvent) and events containing requests to the kernel
(class ChannelEvent) such as timers and notifications of channel initializa-
tion.

Every ChannelEvent is qualified with one of three values: NOTIFY, ON or
OFF. ON and OFF qualifiers are typically used to activate/de-activate specific
features such as the creation of debug logs. Notifications are triggered by
the channel in response to relevant events such as timer expiration or stack
initialization. The exact meaning of each qualifier may be refined for each
channel event subclass.

A session may gather information about the remaining sessions in the
stack by using EchoEvents. EchoEvents are a subclass of ChannelEvent
that carry another event inside them; when a echo event reaches one side
of the stack, the channel extracts the event being carried and forwards it
in the opposite direction. On its way back, the returning event may gather
information about the traversed layers. For instance, a protocol attempting
to temporarily prevent a stack from sending messages, may use this feature
to receive the approval from the remaining sessions.

The SendableEvent class defines a common interface to all events con-
taining data to be sent or received from the network. Messages are expected
to be serialized over an array of bytes, represented by the Message class.
SendableEvents have a source and destination attribute that are untyped
objects. It is up to the protocols to agree on the appropriate data format
for these attributes. Source and destination can change while the event is
traversing the stack: a Membership protocol, for instance, may convert a
group name to an IP Multicast address.

2http://appia.di.fc.ul.pt

8

QoS definition In Appia, QoSs are defined by passing one array of layers
to the QoS class constructor. At QoS definition time, a QoSEventRoute
object is created for each event e in the Γ sets of the QoS’ layers. Each
QoSEventRoute lists the layers that have declared e in their Φ set.

Channel definition Channels are created by issuing requests to the proper
QoS. Channels are expected to be created by the application programmer
or by other sessions. Upon creation, channels have no bound sessions, which
have to be created issuing request to the respective layers.

Channel cursors are provided to perform the configuration of the channel.
Using a channel cursor it is possible to assign sessions to the channel in a
safe way, since the cursor validates the session type against the layer type
defined for the corresponding position in the channel. As previously stated,
sessions can be bound to channels explicitly, automatically or by default.

At channel definition time, each QoSEventRoute is mapped into a Channel-
EventRoute, that lists the specific sessions that a given event type has to
traverse.

5 Performance

In this section we present the overall performance of Appia on a network
composed of Pentium III processors at 500MHz running Windows NT. The
framework was running over a Java 1.2.2 virtual machine. The workstations
were connected with a lightly loaded 10Mbps Ethernet. Besides the two
hosts used on the tests, the network included 3 other hosts. All of them
connected by a single hub.

A simple stack was defined to measure the overall performance of the
prototype. The stack was composed of four layers providing UDP sockets
access, FIFO reliable delivery, fragmentation3 and user interface. Messages
exchanged over the network have a length of 90 bytes. The round trip delay
was averaged from bunches of 100 operations. In the above conditions, the
measured round trip delay of Appia was 2.962ms.

To evaluate the overhead of using Appia, one control program also writen
in Java measured the round trip delay of messages using the UDP protocol.
UDP datagrams took 0.542ms. For crossing 4 times the stack, Appia delays
each message by 2.42ms.

3Due to the sze of the exchanged messages, the fragmentation layer did not execute
usefull work

9

Event delay (µs)
sessions 0 1 2 3 10
transparent 19.61 19.63 19.51 19.64 19.54
ghost 19.61 29.75 39.95 52.13 140.38

Table 1: Delay of EchoEvents with ghost and transparent protocols

Message processing avoidance One of the interesting features of Appia
is that session only process the events they have subscribed. To measure
the impact of this facility, the transparent and the ghost protocols were
created. The transparent protocol does not accept any events. The
ghost protocol handles all events but simply forwards them to the next
session. Channels with different number of these protocols were created.
Each channel had a test protocol on top. The test protocol sent sequences
of EchoEvents and measured the time until receiving the echoed event.

Table 1 shows that the transparent protocol doesn’t affect the kernel
execution maintaining the event round trip delay on the 19µs. The first
column is the control value: the result of the execution having only the test
protocol on the channel. The differences in the results between 0 and 10
transparent protocol sessions come from external events on the worksta-
tion hosting the tests and can be ignored. The results of the ghost protocol
however, shows that presenting unwanted events to protocols can be an ad-
verse factor on performance. Each ghost protocol session adds between
10, 1µs and 12, 0µs to the return of the event.

6 Conclusions and future work

This paper introduces Appia, a protocol kernel that tries to balance the
flexibility in protocol composition with run-time efficiency. With Appia,
protocol stack designers specify the events produced and subscribed by each
layer. In run time, the application may construct the sequence of protocols
layers that is needed to enforce the desired semantics. Specialized event
dispatchers for each QoS ensure the efficient routing of events in the ker-
nel. Instances of QoS, called channels, may share sessions. This allows the
construction of complex stacks, where different channels may share common
properties.

Two improvement directions are currently being taken: extend the avail-
able protocol set and improve the performance results. A group communi-

10

cation protocol set is almost concluded. This will be an important step
that will extend the Appia applications one step further from its current
prototype status.

References

[1] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system
for constructing fine-grain configurable communication services. ACM
Trans. on Computer Systems, 16(4):321–366, November 1998.

[2] K. Birman, R. Friedman, and M. Hayden. The maestro group manager:
A structuring tool for applications with multiple quality of service re-
quirements. Technical report, Cornell University, Ithaca, USA, February
1997.

[3] M. Correia and P. Pinto. Low-level multimedia synchronization algo-
rithms on broadband networks. In The Third ACM Intl. Multimedia
Conference and Exhibition (MULTIMEDIA ’95), pages 423–434, San
Francisco, November 1995. ACM Press.

[4] M. Hayden. The Ensemble System. PhD thesis, Cornell University,
Computer Science Department, 1998.

[5] N. Hutchinson and L. Peterson. The x-Kernel: An architecture for im-
plementing network protocols. IEEE Trans. on Software Engineering,
17(1):64–76, January 1991.

[6] I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group communica-
tion support for distributed collaboration systems. In Proc. of the 17th
Intl. Conf. on Distributed Computing Systems, pages 43–50, Balitmore,
Maryland, USA, May 1997. IEEE.

[7] R. van Renesse. Masking the overhead of protocol layering. In Proceed-
ings of the 1996 ACM Conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages 96–104, Palo
Alto, CA USA, August 28–30 1996.

[8] R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group com-
munications system. Communications of the ACM, 39(4):76–83, April
1996.

11

