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Abstract. A challenge for large scale distributed mobile applications,
such as augmented reality games and social networks, is the management
of application state. Because the infrastructure is concentrated in data-
centers geographically distant from the end users, state flowing between
the large number of users and the supporting infrastructure suffers from
latency and network congestion degrading user quality of experience.
To mitigate this problem, Fog Computing proposes a physical approxi-
mation of the servers to the end users, avoiding the use of the Internet
backbone. However, gains depend of the system capability to correctly
deploy each state component at its most convenient location. Geo-aware
state deployment is challenging as it requires a continuous observation
and interpretation of the state utilization patterns, expected to evolve
with time as new trends and user behavior emerge. This paper proposes
a new object graph-based approach for the geo-aware state deployment
problem and compares its performance with approaches based on linear
algorithms.

1 Introduction

Large scale distributed mobile applications such as smart cities, augmented re-
ality games (e.g. Ingress, Pokemon Go) and social networks (e.g. Foursquare)
concurrently connect a large number of participants. Although with distinct
degrees of involvement, all manipulate and exchange significant amounts of ap-
plication state, mostly mediated by the application’s supporting infrastructure.
The current trend tends to concentrate this infrastructure in Cloud datacenters,
implementing a geographical barrier between the end users and the managers of
the application state. The latency and jitter that unavoidably results from this
distance negatively impacts the application performance.

The Fog Computing approach [1] proposes an approximation of the servers
to the end users by deploying surrogates at the network edge, in particular, on
access networks. Although this approach has the potential to mitigate jitter and
latency and improve performance, it depends on the ability to correctly deploy
each software and state component at its most convenient location.



In the particular case of partial application state, a good geo-aware deploy-
ment depends of a successful identification of the state utilisation patterns. This
is challenging, knowing that each part of the state is expected to exhibit a dis-
tinct pattern. As an example, consider a smart-city traveller support service.
The predicted time of arrival of each bus is information more likely to be ac-
cessed by commuters waiting at the particular bus stop. However, the number
of tickets available in the commuter’s monthly pass is state expected to follow
the commuter. Finally, the number of passengers waiting to travel on one spe-
cific bus route is state best managed at some location close to the bus company
facilities. The problem is amplified by the consistency requirements that can be
found between elements whose ideal location is distinct. A good example would
be the average speed and number of passengers on all the buses in a single route.

An efficient implementation of geo-aware state deployment must implement
policies that adapt to the observed utilisation patterns considering the most
typical location but also the cost of guaranteeing consistency. In addition, the
policies must consider the latency induced by the relocation of any component,
which will necessarily disturb ongoing distributed transactions. Our problem is
in contrast with existing caching solutions, whose main focus is to accelerate the
access to replicas of shared data with a read-only status.

This paper approaches the problem of geo-aware state deployment using
graphs partitioning algorithms. Originally proposed to partition database items
across storage nodes [2], graph partitions are an interesting approach to dis-
tribute state components across different locations so that most of the transac-
tions only need to access one. Unfortunately, the original approach does not con-
sider geographical distribution and the impact of state components relocation. To
address this limitation, the paper proposes a new object graph-based approach
and compares its performance with others inspired on linear algorithms. The
goal is to understand if graph partitioning can be used to identify correlations
and to evaluate their suitability for geo-aware state deployment frameworks.

2 Problem Statement

The problem addressed in this paper assumes a large scale distributed application
where components of the state can be correlated with geographical locations or
with mobile users. In line with the Fog Computing model, we assume that our
distributed application is supported by hardware located on a datacenter and
a number of surrogates: servers located at the edge of the network. Surrogates
provide storage and computing power, are connected to each other and to the
cloud datacenter through a high speed wired network.

End users devices include desktops, mobile devices and sensors using high
speed wired or wireless networks. It is expected that surrogates perform most
of the computational effort, in particular, by application clients in their vicin-
ity. Expectations are that most of the traffic produced by clients is handled at
surrogates and can be replied without forwarding requests to the datacenter.



To address these expectations, the system must implement a geo-aware state
deployment policy, allowing surrogates to store state at its location of interest.

In this model, the geo-aware deployment is managed by a service that decides
in run-time the most suitable location of each state component and coordinates
its transfer from one location to another. Conceptually, this service acts as an
oracle, becoming eventually aware of all state updates and the location of the
requester. Awareness is implemented in practice by having surrogates and data-
center servers to forward in the background the logs of operations they perform.

To tolerate faults, surrogates form partial replication groups that replicate
their content. To reduce latency and facilitate consistency operations, partial
replication groups membership follows a proximity criteria. For simplicity, our
model equally considers an “umbrella” global replication group that includes all
the surrogates and the datacenter. This global replication group is expected to
keep state components widely accessed.

We assume that application state is composed of data that can be either
unique to each user or device (personal data), collaborative data relevant to a
specific geographical location (geo-aware data), or general application logic data
(global data). Depending on the number of partial replication groups involved,
state updates can be either local or global. Local operations are those that access
data enclosed on a single partial replication group, while global operations are
those where the data accessed is stored in multiple partial replication groups.
It is assumed that the surrogate hosting the client requesting the state update
participates in the operation.

The complexity involved in the coordination of global operations motivates
the oracle to keep commonly accessed state components in the same partial repli-
cation group. Each migration decision must consider the cost of the migration
itself, the benefits of increasing the number of local transactions and the cost of
the global transactions to occur in the future.

3 Related Work

Devising efficient geo-aware deployment algorithms can leverage on previous
research results on database partitioning and geo-replicated cloud storage. It
should be noted that the problem goes beyond what is tipically addressed by
Content Delivery Networks (CDN) like Akamai EL given that clients of our target
applications are expected to manipulate state.

Data partitioning was originally proposed as a response to the scalability and
performance needs of database management systems. Its objective is to make a
database more manageable by partitioning data into different nodes. Horizontal
and vertical partitioning were the first policies to emerge. In horizontal parti-
tioning, the rows of each table are evenly distributed by the partitions. Vertical
partitioning follows the same approach but distributing columns by partitions.
The rationale behind these approaches is to make the amount of data more man-
ageable while making respectively the full set of attributes of the same rows or
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the same attributes of all rows in each group. Other mechanisms, sharing parti-
tion data across shared-nothing servers have been proposed for example in [3-5].
These share our goal of minimizing the number of distributed transactions. How-
ever, they assume that all partitions are geographically collocated, thus ignoring
the negative impact of distance on latency.

In contrast with the geo-oblivious approaches pursued by the databases com-
munity, cloud storages bring the notion of physical geography to data parti-
tioning and proposed solutions at different scales. At a server-level scale, geo-
replicated cloud storages aim to reduce latency and improve load balancing. At
a datacenter scale, the goal is to provide fault-tolerance for datacenter level out-
ages. AdaptCache [6] is a server-scale approach that proposes a cooperative and
integrated cache framework for web enterprise systems where application servers
cooperatively share their caches. Like in our approach, AdaptCache’s “oracle”
dynamically evaluates and manages object placement. However, it goes a step
further and distributes requests across servers to achieve load balancing and fa-
cilitate consistency management. This approach is facilitated by the collocation
of servers which, in contrast with our system model, permits AdaptCache to ig-
nore the location of the clients. SPANStore [7] is a geo-replicated key-value store
that unifies storage available in multiple datacenters into a single framework.
The goal is to take advantage of pricing discrepancies to reduce the overall oper-
ation cost. This is in contrast with our model which assumes a dynamic setting
where the “cost” of each object is represented directly by latency and indirectly
by the distance between the client and the server storing the object.

Resilience to datacenter-level outages is addressed for example using dis-
tributed transactional SQL databases like CockroachDB Pl In CockroachDB
replica location is decided automatically, based on user configured criteria such
as the types of failures to tolerate and the distinct locations made available by the
user. Unfortunately, CockroachDB cannot encompass any concerns related with
client access latency neither the dynamism associated to mobile applications.

Regardless of the data partitioning policy used, transactions that involve
multiple partitions are by themselves a complex subject that deserves some at-
tention. These tend to negatively impact system performance and several solu-
tions try to mitigate their effect in the system. The approach in DS-SMR [g]
evaluates the usage patterns to shape the data mapping. Overall, the goal is to
design a dynamic and scalable state machine replication to exploit workload lo-
cality. Like in our approach, data partitioning is managed by an oracle. However,
state reconfiguration follows an oversimplified rule that trades-off latency by the
avoidance of distributed transactions and which consists in transferring the data
to a single partition prior to initiating the global transaction. Workload analysis
and location manipulation can also be found in the geo-replicated storage system
SDUR presented in [9]. This paper shows that performance can be improved by
giving priority to transactions using a single partition.

% https://www.cockroachlabs.com/



4 Geo-aware State Deployment Strategies

Anticipating the future utilization of state items is challenging and can only be
efficiently determined if their utilization follows some pattern. Recall from Sec. [2]
that in our system model the mapping of state items in surrogates is managed by
a dynamic service implemented as an oracle. The oracle collects transaction logs
from the surrogates to evaluate the most suitable one to host each state item.
This paper reports on the results obtained with graph partitioning algorithms
to be executed at the oracle. The goal is to understand the application and en-
vironment characteristics where these algorithms outperform other approaches,
hereafter named linear algorithms.

Overall, the performance of the algorithms is evaluated considering two met-
rics. A perfect algorithm would minimize the number of state item transfers
between surrogates and maximize the number of transactions that can be per-
formed locally, i.e. using a single surrogate. The following sections present and
discuss the algorithms according to their expected performance.

4.1 Linear Algorithms

Linear algorithm evaluate state items independently, i.e. decisions of where each
state item must be placed are taken disregarding their participation on transac-
tions with other state items. This paper evaluates the following linear algorithms:

Static (Static). In the Static algorithm, each object is assigned to the surrogate
where it was first used and never changes. Considering the performance metrics
above, Static trivially minimizes the number of surrogate state items migration at
the cost of penalizing latency during distributed transactions. Therefore, it can
be considered suitable for scenarios where the cost of distributed transactions is
minimal in comparison with the cost of migrating state items.

Movwe to Next (MtN). At the beginning of each transaction, all state items in-
volved are transferred to the surrogate that initiated the transaction. Items re-
main hosted on that surrogate until the algorithm is reapplied. MtN is a direct
application of DS-SMR [8] and minimizes the number of distributed transactions
at the cost of an expectedly large number of item migrations among surrogates.

Aggressive Polling (AP). Items are moved to the surrogate where they have
been more used. It is assumed that the algorithm has an infinite memory, what
can represent a penalty for the quick reaction to usage pattern changes for long
standing state items. However, it is expected to present a suitable balance be-
tween the two radical approaches above avoiding spurious state item transfers.

4.2 Graph-partitioning Algorithms

Graph partitioning algorithms aim to improve performance by considering the
association between state items in transactions. This is expected to favour the



observation and adequate reaction to correlations and clusters, a capability that
has been previously reported in |2]. The paper presents a graph-based approach
to partition database items across storage nodes so that most transactions only
need to access one node. In this approach data items are represented by vertices,
connected with an edge if they are accessed together by at least one transaction.
Vertex weight is used to represent the absolute access frequency of an object,
while edge weight represents the number of transactions that accessed both
objects. The graph is then partitioned into k partitions by graph partitioning
algorithm such as k-way min/cut [10]. This algorithm focus on minimizing the
edge-cut (the objective) in a way such that the sum of the vertex-weight in
each partition is the same (the constraint). The minimization of the edge-cut
cost favors the deployment of vertices frequently accessed in conjunction in the
same partition. On the other hand, the vertex-weight constraint is necessary to
avoid the trivial solution of keeping all vertices in a single partition and paying
a edge-cut cost of 0.

Hotspot Weighted Graph (HWG). The graph representation described is unable
to represent geographical distribution, crucial for our system model. This is an
important aspect as more populated areas may access more state items than
others. In our scenario, partition imbalances are expectable and should be pre-
served if they represent the effective utilization pattern. To address this problem,
the HWG algorithm adds a new “surrogate” vertex type which reflects the asso-
ciation of a state item to the surrogate. For the edge-cut algorithm, “surrogate”
vertexs are indistinct from the remaining, with edge weight reflecting the number
of transactions using the state item initiated in the surrogate. Surrogate vertices
are given a weight large enough to force the partition algorithm to deploy one at
each partition. All other vertices were assigned a weight of 0, to encourage the
algorithm to focus on edge-cut cost and disregard the leveraging of the number
of state items per partition (i.e. load-balancing).

To better illustrate this model, Fig. [T] depicts Twiter hashtags distribution
by 4 surrogates (Lisbon, Porto, Braga and Faro) after HWG is executed (details
are presented in Sec. . The figure evidences 4 large hotspots, each representing
one surrogate vertex and the association of each vertex (the tweet hashtag) to
the surrogates where the tweet was performed. Tweets at the center of the graph
are connected to more than one location.

4.3 Deployment Revision Frequency

The frequency of execution of the deployment algorithm can have a non negli-
gible impact on the system. Each run of the algorithm will necessarily require
computing power at the oracle and have the negative impact on performance
of migrating state items between surrogates. However, algorithm executions are
crucial to ensure the proper deployment of the state items and reduce the num-
ber of transactions envolving two or more surrogates. In this paper, a moderate
approach of running the algorithms after every 1000 transactions was adopted.



Fig. 1: Geographical object graph representation of a Twitter dataset from 2017
in Portugal.

It should be noted that the decision to use a frequency of 1000 transactions
considers results observed in preliminary experiments with very frequent revi-
sions. These experiments showed that as the revision frequency increases, so
does the probability of the algorithms to follow inconsistent utilisation patterns,
observed in the last few transactions. As a result, the number of state items
migration increases exponentially, negatively impacting system performance.

5 Evaluation

To understand the impact of our state deployment strategies on system per-
formance, we prepared an evaluation scenario using Twitter. The 53392 tweets
used in this study were collected using Twitter’s Streaming APIEl between Jan,
10th and May, 1st 2017. The API was configured to retrieve tweets within 25km
radius of 4 Portuguese cities (Lisbon, Porto, Braga and Faro). Supported by
results in [11], it is assumed that the 1% of the tweets retrieved by the APT are
statistically representative of the hashtag diversity.

In total, 28615 distinct hashtags were found with 19120 of those only ap-
pearing once. Figure[l|is a graphical association between the hashtags retrieved
and the cities where they have been published. The histogram on Fig. [2| shows
that the majority of tweets (54%) only has 1 hashtag and that 80% of the tweets

3 https://dev.twitter.com/streaming/overview
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have 3 or less hashtags. Overall, most of the tweets (66%) originated in Lisbon
with Porto, Braga and Faro following with respectively 22%, 8% and 4%.

The evaluation consisted in running the algorithms described in Sec. [4] over
an application state created from the tweets set. Each tweet was mapped on a
transaction, with its hashtags representing the state items accessed. The transac-
tion is assumed to have occurred on the location where the tweet was published
and this location is associated to 1 of a set of 4 possible surrogates mapped on
the cities. Each hashtag is initially affected to the location where it was first
tweeted. Transactions are processed in chronological order.

5.1 Metrics

The performance of each policy was evaluated using 3 distinct metrics. The
number of state item migrations and the number of surrogates partici-
pating in a transaction reflect the overhead imposed to the system. They are
expected to be as small as possible in order to increase performance and reduce
overhead. The proportion of transactions enclosed in a single surrogate
complements the metrics above by highlighting the cases where the algorithm
was able to achieve the optimal goal of deploying all the items in the same
surrogate prior to a transaction.

5.2 Results

State Item Migrations Migrations are time and resource consuming opera-
tions, requiring the participation of two surrogates and possibly halting ongoing
transactions. The goal of the algorithms is to be as efficient as possible by keep-
ing this value low. The amount of group changes performed in the system is
depicted in Fig. [3] The figure omits the Static and MtN algorithms. The former
because no migrations are performed and the second because surrogate migra-
tions are necessarily performed prior to each transaction and therefore results
cannot be aggregated in the 1000 transaction slices.

The figure [3|shows a clear distinction in the performance of the AP and HWG
algorithms. AP is considerably more conservative in what respects to items mi-
gration, approaching optimal results as time progresses. On average, AP achieves



an interesting result of 0.01 migrations per transaction. This result tends to indi-
cate that once consolidated in a location, hashtags tend to be consistently more
used in that location than in the remaining.

In contrast, HWG starts with an amount of group changes close to 0.1 per
transaction and slowly increases during the experiment to around 1 group change
per transaction. Results suggest that the creation of new edges or their update
with new weights has a major impact on the graph partitioning algorithm, cre-
ating a map significantly different from the one defined in the previous revision.
Part of this problem is attributed to the lack of memory of the algorithm, which
focus exclusively on the actual state, disregarding the previous deployment. In
practice this leads for example to the random breaking of ties, something that
considering the overhead involved in state migration should be avoided.

Figure [3 highlights two abnormalities. The first happens at the 42000 tweets,
after which the performance of the AP algorithm improves consistently. A careful
analysis of the dataset revealed that 942 of the 1000 transactions in this period
contain at least one of the hashtags BBMAs and BTSBBMAs. Such a large pro-
portion clearly reduces the number of migrations to be performed as the number
of tweets using the remaining hashtags was negligible. This trend continued until
the end of the dataset, thus benefiting AP’s memory approach. Interestingly, the
behavior of HWG is orthogonal to this abnormally has it continued to shuffle
hashtags unused in the period to leverage partitions. In contrast, the second ab-
normally, which occurred at the end of the dataset has a strong impact on HWG
and can be explained by the small size of the evaluation window (392 trans-
actions). It causes the graph to suffer from a temporary imbalance leading to
migrations that could have been avoided with a larger and steadier observation
window and confirms the inadequacy of high deployment revision frequencies.

Surrogates per Transaction Figure 4| depicts the average number of surro-
gates participating on each transaction. The plots of MtN and Static serve as
control variables as they represent the theoretical minimum (recall from Sec.
that MtN moves all items to the same surrogate before every transaction) and the
cost of not reacting to changes in utilization patterns. An higher average signals
an undesirable situation negatively impacting performance on more transactions.

In the general case, HWG and AP show results between the two control algo-
rithms, confirming that it is possible to improve the performance in scenarios like
the one anticipated by our system model. HWG consistently exhibits an average
below AP. This result is inline with our expectations, considering the additional
effort performed by HWG during the revision deployment phase and which is
clearly contributing for an improved geo-aware deployment.

Not surprisingly, the abnormality around the 42000 transactions discussed
above can be equally observed in this metric, with all algorithms exhibiting a
sudden spike in that region of the plot. The strong concentration of tweets us-
ing two particular hashtags is even sufficient for HWG and AP to surpass the
average presented by the Static baseline test. To understand this behavior, it
should be noticed that the hashtags must be deployed in one of the surrogates
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while a considerable proportion of the tweets are being requested by the remain-
ing. These behaviors can only be mitigated by including in the experiments the
datacenter meta-surrogate discussed in the Sec. [2] which would absorb these pat-
terns by claiming the ownership of this hashtags. However, it should be noticed
that both algorithms resume their performance once the exceptional scenario
has been surpassed.

Single Surrogate Transactions The proportion of transaction that have all
their items hosted by the same surrogate is depicted in Fig. [f] Expectations
are that the geo-aware state deployment policies approach the perfect scenario
presented by design of the MtN control algorithm.

Results confirm that geo-aware deployment policies are all able to outper-
form the results of the Static baseline test, with a similar gain of around 10%
transactions. On average, HWG outperforms AP by approximately 1%. Not sur-
prisingly, the proportion of transactions enclosed in a single group is also consid-
erably hampered at the 42000-43000 transaction mark for the reasons discussed
above.

Discussion A preliminary surprising result of the evaluation above was the good
performance exhibited by the Static algorithm, capable of competing with other
more informed approaches. However, this is a result whose applicability is limited
as it strongly depends of the state utilization pattern. In particular, the results of
Static show that in a fair proportion of the cases, tweeter hashtags are influenced
by locality. The aggressive MtN algorithm equally presents interesting results.
However, it cannot be directly compared to the remaining as their deployment
revision frequencies are significantly different.

Overall, the performance of any geo-aware state deployment algorithm will
be dictated by the trade-off between migrating state items between surrogates
and performing distributed transactions, i.e., those involving more than one sur-
rogate. Figures [6] and [7] materialize this trade-off in the results observed with
the tweeter dataset from two distinct perspectives.

Figure [6] depicts a two-dimension perspective of the absolute number of item
migrations against the absolute number of local transactions observed in our
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tweeter dataset. Best algorithms are expected to be concentrated at the bottom
right corner of the plot, thus presenting the maximum number of local transac-
tions using the minimal number of item migrations. Not surprisingly, champions
on each dimension are the Static and MtN algorithms. However, as discussed
before, they do not comply with the expected behavior.

The comparison between AP and HWG clearly suggests an advantage for
AP. However, this is exclusively due to the excessively large number of item
migrations required by the graph partitioning algorithm as HWG surpasses AP in
the number of local transactions. A research direction that is clearly highlighted
by this paper is the need to identify the constraints at the partition algorithm
that refrain the number of migrations. In this respect, some form of “memory”
that permits to preserve the association of items to a surrogate will be one of
the topics to pursue.

In a real setting, the differences between these or other algorithms will neces-
sarily be influenced by the effective cost of two operations: migrate a state item
and the overhead of performing a distributed transaction instead of a local one.
The materialization of these costs is outside the scope of this paper. However,
Fig. [7] represents the overall “penalty” of AP and HWG for our experiment as
a function of the ratio between the two costs. The plots represent the equation
overhead, (z) = (53392 — L,) + %Ma where L, and M, are respectively the
number of local transactions and migrations for algorithm a and x is the cost
ratio between migrations and distributed transactions.

Again the figure highlights a clear disadvantage for HWG, with its overhead
only being lower than AP when the ratio is very close to 0, i.e. when migrations
have a negligible cost in comparison with distributed transactions. However, it
should be noted that these results may be negatively influenced by the small
proportion of transactions involving two or more state items in this dataset, as
shown in Fig. [2|

6 Conclusion and Future Work

This paper have proposed and compared a new graph-based algorithm for the
geo-aware state deployment problem. In contrast with the alternatives, the graph-



based algorithm is “transaction aware” in the sense that it considers associations
frequently observed between state items and attempts to keep them in proximity.
In spite of its benefits, the advantages of this algorithm can only be observed in
a very limited number of scenarios.

Work in this field continues. In particular, the current graph representation is
oblivious to important factors like the benefits of keeping each item in the same
location, avoiding migrations or long term memory eviction. Finally, authors plan
to experiment these algorithms on distinct datasets as an approach to confirm
the results observed.
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