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Abstract. As mobile applications become increasingly complex, the
ability to offload computation from mobiles to the cloud gains relevance
as a technique to alleviate the computing power of resource constrained
mobile devices. The existing approaches can either execute independent
tasks within a process or full processes through the creation of virtual
machine images. However these systems are oblivious or have very little
knowledge of the application’s state at the client side. This knowledge
can be used to enhance the performance by reducing the number of in-
vocations and data transfered. In this paper, we present an architecture
towards remote execution of mobile applications that is able to share
applications’ state between clients and surrogates. This model leverages
offloading responsiveness through a lighter communication model, with
the possibility to cache and pre-fetch results in anticipation of a client’s
arrival. We then describe how this system and all of its components will
operate on a real case scenario.

1 Introduction

As communication and sensing capabilities of mobile devices increase, mobile
applications become increasingly complex and a new class of latency-sensitive
computations such as mobile multimedia applications are arising. Cloud offload-
ing aims to alleviate the computing power of resource constrained mobile devices
in such situations. Cloud offloading alleviates the cost of executing applications
locally, what drains battery and computation resources of the mobile device.
However, offloading tasks also consumes energy resources of the mobile device
due to sending and receiving data and results, and still adds the latency inherent
to this process. Being aware of this trade-off and estimating when each option
compensates is key to designing a remote execution system. In contrast with
Mobile Cloud Computing, which provides cloud based services to mobile users
through the Internet, remote execution systems offer an opportunistic use of
available computing resources that are reachable on the local network. However
the existing remote execution systems are oblivious or have very little knowl-
edge of the application’s state at the client side. This knowledge can be used
to enhance the performance by reducing the number of invocations and data
transfered.

In this paper, we present a novel cloud offloading system model. Our model
assumes that surrogates, i.e. the providers of computing power and storage, are
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connected to the Internet, can communicate with each other and communicate
with clients using a short range, low power protocol like WiFi. The main inno-
vation for our architecture is the sharing of processes’ state among users and
surrogates. This allows surrogates to be proactive and cache or pre-fetch past
results in anticipation of user movement. In addition, the system evaluates the
cost of local and remote execution and selects the best option among them.

The remainder of this paper starts with a discussion of the related work on
remote execution for mobile applications (Sec. 2). Next, we present a high-level
description of our system architecture (Sec. 3) and its application in a real life
scenario (Sec. 4). The final two sections are dedicated to the discussion of future
work (Sec. 5) and conclusion (Sec. 6).

2 Related Work

Cloud offloading or cyber foraging seeks to overcome the resource limitations
of wireless mobile devices [1]. The goal is to dynamically augment the comput-
ing resources of a mobile device by offloading their resource intensive tasks on
resourceful surrogate computers. This concept may also be referred as remote
execution, and it is particularly useful for latency-sensitive computations. To
ensure the remote execution of tasks, existing systems can follow three main
paradigms: Remote Procedure Calls (RPC), the creation of Virtual Machine
images that replicate the mobile devices’ execution platforms or Mobile Code.
These paradigms will be discussed in separate in the following subsections.

2.1 Remote Procedure Calls (RPC)

In the RPC-based approach, client applications are partitioned into locally exe-
cutable code and remotely executable services. These services are pre-installed
on surrogate computers who then offer a RPC like API. In Spectra [2], the mo-
bile clients run a specific Spectra client which specifies a set of possible execution
plans for an application. An execution plan uses one or more services, which are
the actual application code that is executed on the surrogates. Chroma [1, 3, 4]
was proposed as a refinement of Spectra and so both approaches share similar
architectures. The main innovation brought by Chroma was the use of tactics,
a new way of defining Spectra’s execution plans. In a tactics file, the developer
specifies the RPC functions that may be called during that operation execution,
and the different ways that these functions may be combined to solve the opera-
tion. Nevertheless, on both of these systems it is up to the programmer to code
the remotely executable services as stand-alone applications to be installed on
the surrogates.

Other RPC-based systems include MAUI [5] and Odessa [6] which aim at
automatically partitioning application’s methods. Applications rely on MAUI
framework to decide which methods should be offloaded. This decision is based
upon a call graph that is created off-line to assess the computational and energy
costs of each method and the size and energy consumed to transfer the state
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remotely. Odessa, on the other hand, proposes a runtime that automatically
and adaptively makes offloading and parallelism decisions. Instead of estimating
costs based on off-line graphs, Odessa uses a greedy algorithm that periodically
gathers information from a profiler to estimate the bottleneck of applications
in the current configuration. This information is used to estimate whether of-
floading or increasing the parallelism level of the bottleneck stage would improve
performance.

2.2 Execution environment replication through Virtual Machines

Another class of cloud offloading systems creates virtual machine images that
replicate the execution environment present on mobile devices. Users prepare
an image of their devices and then send it to the surrogates for execution.
CloneCloud [7,8] distributes the computing effort of the resource-intensive parts
of an execution with a more powerful clone. This clone is created on the cloud,
and the user’s mobile device and the clone are synchronized periodically or on-
demand. Applications can either be offloaded as a whole to the clone or may be
partitioned into pieces and executed on both entities.

In the system proposed by Goyal & Carter [9], the surrogates begin by regis-
tering themselves on a central service registrar, detailing which virtual machines
they offer. Once a client queries the registrar to find a suitable surrogate for his
execution, he receives an IP address of a possible surrogate. The client is then
responsible for contacting the surrogate and establish a contract to provide the
service for a specified amount of time. Goyal & Carter’s system may require an
Internet connection in the surrogates, in case they have to fetch the application
specific software from the Internet.

Slingshot [10] follows a different vision of a VM-based cyber foraging system.
An Internet connection is mandatory for both client devices and surrogates at
all time. Slingshot also assumes that there is always one surrogate available:
the first-class replica, which is an Internet connected machine controlled by the
mobile user used when no surrogates are available on the mobile client local
network. First-class replicas have the setback of the relatively low speed and
high latencies of Internet links when compared to local Wi-Fi, especially in
terms of upload speed from the mobile device to the surrogate. To alleviate
this problem, Slingshot assumes that surrogates are capable of receiving virtual
machine images from the first-class replica, thus becoming second-class replicas.

Satyanarayanan’s vision of cloudlets [11, 12] equally relies on full Virtual
Machine migration. Rather than relying on a distant “cloud”, a device can obtain
a real-time interactive response by low latency, one-hop, high-bandwidth wireless
access to the nearby cloudlet. The mobile device functions as a thin client, with
all significant computation occurring in the cloudlet .

2.3 Mobile Code

The last approach that can be followed to implement a remote execution system
is to have the source code traveling from the user to the surrogates to be ex-
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ecuted. In this approach, proposed in Scavenger [13], surrogates run a daemon
which is responsible for offering remote access to the mobile code execution en-
vironment as well as device discovery. The offloading process can be done in two
ways. The first is the manual option, where the application can itself ask for
a list of available surrogates and install code on those surrogates. The second
possibility is an automated mode, where the application programmer annotates
each method that may be remotely executed, and lets the system schedule and
decide which functions are transferred to the surrogates.

2.4 Limitations

When comparing the three remote execution models, we observe that the use of
virtual machines images allows more flexibility than the RPC-based approach in
the sense that users can send their own functionality to surrogates on-demand.
The installation of “services” in the VM-based approach is done by giving the user
complete control over an entire virtual machine image running on a surrogate
computer. However, this solution has an obvious setback in terms of initialization
overhead due to the time and data size required to transfer and boot up an entire
virtual machine image on another computer.

In terms of overhead, the RPC and Mobile Code models are more lightweight,
hence more suitable for mobile devices, since they have negligible initialization
overhead. Either because the services are already installed and made available
on surrogates or because the code transfer required by the Mobile Code model
is, in most cases, only a few kilobytes in size. However, the latter approach is
bounded to a specific language in which the mobile code must be expressed, thus
limiting the portability needed to ensure a seamless and transparent execution
environment for all mobile devices. For these reasons, we consider that the RPC-
based approach is the most suitable model to implement a remote execution
system.

It is interesting to notice that the existing solutions are oblivious or have
very little knowledge of the application’s state at the client side. This knowledge
is however useful to enhance the offloading process performance by reducing the
number of invocations and data transfered, thus making it more effective and
transparent. Exceptions are MAUI and the architecture proposed by the com-
puting model vision for application cloud computing presented by Paluska et al.
in [14]. In MAUI, each method invocation has an additional input parameter
used to transfer the application state from the mobile device to the surrogate.
The system only transfers incremental deltas of the application state, thus con-
tributing to reduce the latency and traffic. In the work presented in [14] the
application state is used within a more general abstraction called tasklet which
represents a thread of computation. Tasklets are composed of chunks, which are
fixed-sized arrays that include data, code and the machine runtime state needed
to execute the tasklet on the surrogates. We envision extending this knowledge of
application’s state sharing between clients and surrogates to leverage offloading
responsiveness through a lighter communication model with the clients and the
possibility to cache and pre-fetch results in anticipation of a client’s arrival.
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3 System Architecture

Our system is composed of surrogates connected to each other and located at
one-hop WiFi distance of the clients. Surrogates are resourceful devices, without
power constraints, making available both computing power and storage to the
clients. Clients can use different transmission modes to reach surrogates (GSM,
Bluetooth or WiFi), although the short range and bandwidth make WiFi the
preferred model. The remote execution mechanism is implemented through RPC,
with the clients invoking services available on surrogates to alleviate their com-
puting power.

The mobile applications that clients run are first partitioned into methods
that can later be executed locally or remotely. It is up to the client to decide
which methods will be remotely executed, but it is up to the surrogates to
announce their availability to the users. This is done with periodical announce-
ments. Clients can invoke different services on different surrogates for a same
application. The main innovation of our system is that the surrogates have ac-
cess to and keep the needed applications’ state locally to execute the invoked
services. As firstly proposed in [14], the applications’ state will be expressed as
chunks, a fixed-sized array with an unique identifier. Chunks are built by the
clients (by a component called Chunk Builder) and then sent to the surrogates
who keep them (on a component named Chunk Manager). But, in opposition to
MAUI, states may be on different synchronization levels. Eager chunks always
have to be up to date at the surrogates. If a chunk is tagged as lazy, surrogates
can execute tasks with previous versions. Our design is comparable to MAUI in
the worst case scenario where every invocation needs to receive the update of
an eager chunk. Otherwise, since we maintain lazy synchronizations, surrogates
can execute tasks with chunks that might not have been synchronized yet, thus
reducing the volume of transfers and the burden of keeping data up to date. By
keeping state at the surrogates, this model is also expected to outperform [14]
where the machine runtime state is always included in the tasklets along the
code and the data needed to execute them.

Before the client is be able to offload his tasks, a few operations must be
performed. Surrogates periodically announce their services. Advertisement mes-
sages are produced by a surrogate component named Service Announcer and
include information about the current execution load of the surrogate (provided
by the Load Monitor component) and the list of available services from the Ser-
vice Library component. Since surrogates are connected to each other, this list
of available services can be updated by requesting services present on other sur-
rogates. The Service Locator component keeps the index of the own services of
a surrogate and also forms a service graph of the other surrogates services.

On the client side, the application targeted for remote execution must firstly
be partitioned from its bytecode into remotable execution methods. This parti-
tion is made by identifying the annotations written by the developer. For each
annotated method, the decision of offloading is taken by the the scheduler, named
Tasklet Distributor. The methods decided to be offloaded are transformed into
service invocations to the surrogate. Otherwise, these methods are executed lo-
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cally by the Tasklet Executor component (present both on the client and on
the surrogate). An addition of our model comparing to previous solutions is
the presence of offloading interest for each method. In contrast with previous
systems which only used a binary (“yes” or “no”) offload. We envision to assign
each annotated method with an offloading interest between 0 and 1, that will
help the client scheduler to decide which methods will be offloaded. Decision will
weight the criteria with the current network conditions (periodically measured
by an Environment Monitor) and the current execution load announced by the
surrogates at discovery time.

After discovering which surrogates are available and the running application
properly partitioned, a user can invoke services of the surrogates. Since clients
can communicate with surrogates using distinct protocols (GSM, Bluetooth or
WiFi), communication is handled on the client side by a Network Dispatcher
component, responsible for abstracting the network conditions from the rest of
the components. Invocations contain the IDs of the chunks needed to complete
those executions. The surrogates ask their Chunk Manager component to return
the referred chunks and pass them to the Tasklet Executor component, where
executions are preformed. If the chunks needed are not available on a surrogate,
it asks the mobile device to build and send them. Once the execution is fin-
ished and if the states of the chunks changed, the chunks are updated back to
Chunk Manager. If appropriate (considering future use and network conditions)
modified chunks are also returned to the client along with the results from the
invocations. Figure 1 depicts the overall architecture of the system. Surrogate
discovery, tasklet invocation, chunk creation and result return are identified by
the arrows numbered from 1 to 5. Dashed arrows indicate optional steps.

Finally, the surrogates have additional features that allow to cache and pre-
fetch previous tasklets results for a user that usually requests a determined
tasklet or a set of taskslets at a certain location and time. This is done with
the help of a Mobility Profiler and a Route Prediction components that rely on
the historical data of remote executions of each user and movement prediction
algorithms to anticipate the client’s arrival to the surrogate region.

4 Application to a real life scenario

This section describes an application of our framework in a face and object recog-
nition application, embedded for example in smart glasses assisting Alzheimer’s
patients [11]. In this example, a camera for scene capture is built into the eye-
glass frame of a user along with earphones for audio feedback. These hardware
components are combined with software for scene interpretation, facial and ob-
ject recognition and context awareness in such a way that, when a user looks at a
person or an object for a few seconds, that person or object’s name is whispered
in the user’s ear along with possible additional cues. In order to implement this
scenario on our model we assume that the surrogate possesses a set of services
required to identify faces and objects on an image, classify them, obtain relevant
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characteristics of the items, and compare such features with existing ones on
familiar faces and objects.

Following this example, the system at the client side starts by statically
analyzing the byte code to identify partition methods and offloading interests
for those methods. In such scenario, these may include extracting faces and
objects from scenes; obtain relevant features from the data (such as face regions,
variations, angles, and measurements like eye spacing); comparison methods; and
classification algorithms to form the identification task. These partition methods
are sent to the Tasklet Distributor component.

Meanwhile, the surrogate’s Service Announcer periodically announces its
availability by sending its available service list and its current execution load.

The client receives the announcement broadcast through his Surrogate Dis-
covery component. The later sends the list of available services provided by the
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newly discovered surrogate and its current execution load to the Tasklet Distrib-
utor component.

The Tasklet Distributor component gathers the partitions identified earlier
and the surrogate information received from the discovery module, and decides
which will be executed locally and which will be offloaded, thus creating tasklets.
The local tasklets are sent to the Tasklet Executor present on the client’s de-
vice. The offloaded tasklets are invoked on the Tasklet Executor of the surrogate
through RPC. In this case, such invocation may contain the first service ID (ex-
tracting faces and objects from a scene) and the images that are being gathered
by the client’s eyeglasses.

As a result of an invocation, the surrogate Tasklet Executor receives the
chunks for that execution from its Chunk Manager (responsible for keeping and
managing the chunks shared with the client). If necessary, in case where the
surrogate does not have a specific chunk or needs its latest version to execute
a tasklet, the surrogate reaches the client for the needed chunks. For example,
in the case of the comparison methods used for face and object recognition, the
surrogates may query the client to determine whether the client has familiar
faces or objects to be compared with the scenes received.

On the client side, the request of a missing or an outdated chunk from the
surrogate is transferred to the Chunk Builder component that is responsible to
build and send it back to the surrogate. A new chunk can be built with the
characteristics of a new familiar face or object that the scenes being analyzed
by the surrogate need to be compared with.

As the tasklets are being executed on the surrogate’s Tasklet Executor, the
results are sent back to the client along with possible new chunk states, changed
during execution. For example, such state change can be the identification of a
person or an object at a determined location or the notification that a set of
scenes have already been analyzed.

5 Future Work

A remote execution model with the characteristics above raises a number of
interesting research challenges. This section addresses some of them, arranged
in different classes.

One class is related with the performance of the system, which will be strongly
dependent of the latency of the communication between clients and surrogates.
The framework must find, for example, an efficient algorithm allowing surro-
gates to anticipate a client’s arrival. This will imply the combination of route
prediction algorithms with movement pattern studies and profile history to build
predictions about users arriving close to a determined surrogate or the sequence
of surrogates to be followed (consider for example a shopping mall, where the
majority of users follow one of a few routes).

The second class is related with the capability of the framework to address
the requirements of a broad range of applications. Problems rest on the iden-
tification and development of the library functions that the surrogates should
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provide to their users. Responses must weight efficiency (knowing that the most
complete functions require few interactions between mobile devices and surro-
gates) and applicability (given that the more simple the function, the bigger is
the probability that the function can be used in more than one application).

Ensuring user privacy is one of the more challenging questions. End-to-end
encryption of messages is a basic security measure addressing this problem. How-
ever, security needs to be considered on a larger scale, given that chunks or
tasklet results could contribute to improve the overall performance of the sys-
tem. Consider for example the reuse of a face recognition tasklet by different
users in proximity, trying to identify some bystander. In such a scenario, one
must consider distinct privacy levels. The metrics that are feed to the tasklet
as well as its results can be made publicly available. However, personal com-
ments about the bystander, retrieved from a user’s personal database must be
kept confidential and disclosed exclusively for the user that created them. The
mechanisms to associate the different privacy levels to tasklets and chunks at
the programming level and its enforcement in run-time will be equally subject
of analysis in the future work.

6 Conclusion

In this paper we have proposed an architecture towards remote execution of
mobile applications that is able to share applications’ state between clients and
surrogates. This model leverages offloading responsiveness through a lighter com-
munication model, with the possibility to cache and pre-fetch results in antic-
ipation of a client’s arrival. We have described each component of our system
and how they intercommunicate with each other. We have also described how
our system would operate on a real life scenario and how the users would ben-
efit from using a remote execution system with application state sharing for a
communication and performance improvement. Finally, we have described our
initial issues raised from designing such system and that will be addressed in the
future.
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