An analysis to the deployment of access points using genetic algorithms

Análise à disposição de pontos de acesso utilizando algoritmos genéticos

> Rui Ligeiro CapitalJ rligeiro@capitaljit.com

Hugo Miranda Universidade de Lisboa

hmiranda@di.fc.ul.pt

Infra-structured Wireless Networks

 Wireless networks are usually deployed without adequate planning

- One access point (AP) per room
- In the most convenient place (from a user perspective)

This approach has many drawbacks

- Sub-optimal
 - coverage
 - bandwidth
- More APs than required
- Complex configuration
- Coverage outside the desired physical limits

Site Survey

A class of tools used to perform on-site analysis of a wireless network deployment

Typical output includes:

Number, name, channel and received signal strength of APs in range

Helps user to diagnosis coverage deficiencies

Provide a graphical interface offering an integrated view of the site

Situs

A site survey application, Blueprints defined in Situs or uploaded from external applications Graphically displays: Number of APs **Received Signal Strength** Expected bandwidth Interference

Situs screen-shot

Automating the Deployment of Wireless Networks

Useful for:

- Planing the location of points of access to the wired network
- Home networks
- Fix existing deployments
- Requires the estimation of signal fading
- Must account with obstacles, walls, etc.
 - Propagation models are widely available in the literature
 - Free-Space
 - Motley-KeenanMulti-Wall

Algorithms

How to find suitable locations for the APs?

- Testing all possible combinations: resource demanding
- Trial and error
- Genetic algorithms

Genetic Algorithms

 Chromosomes represent configurations (solutions) of some problem

Solutions are evaluated by a fitness function

- The fitness function selects the best individuals (chromosomes) for recombination of its genes
- Individuals have their genes recombined by operators to create new individuals
 - Crossover
 - Gene Swap
 - Mutation

Problem Representation

Each square in the surveyed space is a gene

- Each gene has value 1 if an AP is located there or 0 otherwise
- Each individual is a map of the site

Fitness Function

Evaluates the "quality" of the solution represented by the individuals

- Different fitness functions may evaluate different criteria
- **Sit**us' fitness function:
 - Counts the number of squares without coverage
 - **Tie-break:** sum the signal strength of all squares

User may select from different propagation models

Genetic Algorithm in Situs

Defining the initial population

Create a random population

Seed

- Selects the best of a random population of predefined size
- Add it to the population set
- Repeat until last consecutive n iterations do not provide an individual better than all previous in the population set

Combining the population

Combine the population

- 1. Crosses the genes of pairs of individuals
- 2. Selects the best of them
- 3. Swaps its genes

After each step, see if the result improves the population

Individual evaluation

- Stops if the best solution in the population provides full coverage to the map
- Otherwise, mutes a random gene to one (adds one AP) and restarts
- This individual is the first one to be added to the population on the next iteration

Evaluation

- Situs was tested in a real deployment of a wireless network
- Surveys performed with high accuracy
- **Surveyed region size:** 19mx6m (approx. 114m2)
- Sets of random population with 2 individuals
- Addition of individuals stop after 4 iterations without a better one
- *Multi-Wall* propagation model

Example

sing genetic algorithms – p.

Conclusions

Situs extends existing site survey applications with tools to fix and plan infra-structured wireless network deployments

- The genetic algorithm allowed to rapidly and correctly find a good deployment of a wireless network infrastructure
- The Multi-Wall propagation model was a little optimistic about the coverage provided by the APs

Future Work

Define new fitness functions and stop conditions

- Allow to include regions with minimal signal strength
- Allow to guarantee that some regions will not have coverage
- Accept user-defined trade-offs between number of APs and quality of the coverage

Improve the genetic algorithm

- Better understand the contribution of each genetic operator to the outcome
- Test other genetic operators
- Analytically define adequate values for the constants in the algorithm.