
Redundant Firewalls for Web Applications

Dauto Jeichande1 and Hugo Miranda2,1

1 Faculdade de Ciências da Universidade de Lisboa
fc47011@alunos.fc.ul.pt

2 LaSIGE
hamiranda@ciencias.ulisboa.pt

Abstract. Web Application Firewall (WAF) is a security technology
that filters communications using the HTTP protocol to ensure the re-
spect of the logic expected by the application layer. WAFs acceptance is
predicted to grow significantly, much thanks to its support by two of the
major HTTP content distribution platforms (Nginx and Apache).

The paper studies the contribution of diversity and redundancy in WAFs
architecture, orchestrated in order to provide greater resistance to at-
tacks that exploit new vulnerabilities. The architecture is designed so
that the operating system and the web server of each component share
the fewest possible vulnerabilities. This study compares the impact on
performance and resilience of our architecture with several other config-
urations, with and without WAFs.

Keywords: Web Application Security, Web Application Firewall, Re-
verse Proxy, Diversity, Load Balancing

1 Introduction

Web business applications are very easy to access through the ubiquitous web
browser and a great competitive advantage in the business world. Unfortunately,
web access is also available for adversaries, which use it as an attack surface.
According to Symantec, from 2012 to 2013, the proportion of scanned websites
with vulnerabilities increased from 53% to 77%.3

A Web Application Firewall (WAF) is an appliance, server plugin, or filter
that imposes a set of rules to Hyper-Text Transfer Protocol (HTTP) conversa-
tions. The rules protect the web application from the most common attacks such
as injection, broken authentication and session management, Cross-Site Script-
ing (XSS), insecure direct object references, Cross-Site Request Forgery (CSRF)
and invalidated redirects and forwards. These characteristics make of WAF a
good candidate to complement both conventional network firewalls and Intru-
sion Prevention Systems (IPS) with an additional layer that analyzes the logic

3 Internet Security Threat Report. Retrieved November 17, 2015, from
http://www.symantec.com/content/en/us/enterprise/other_resources/

b-istr_main_report_v19_21291018.en-us.pdf

323

of the application and apply strict security checks on the decoded request con-
tent. Correctly configured WAFs can detect known attacks and even new types
of attacks by analyzing the pattern of the traffic [3]. This is in contrast with
both conventional network firewalls and IPS, which address the intrusion prob-
lem from a link, network and transport layer perspective. IPS has no knowledge
of the web application layer constructs, the data structure, and encoding. For
this reason, IPSs either fail to prevent many attacks or produce false positives,
depending on the security policies.

The concept of security through diversity is a topic of interest these days in
the design of intrusion tolerant architectures. This paper aims at contributing to
understand the practical impact of redundancy and diversity of WAFs in a web
application. Redundancy is experimented as a tool to provide protection with
high availability for the web business applications. However, as it is often argued
that redundancy without diversity is useless against organized and systematic
attacks, the test-bed architecture was built to equally experiment diversity in
the key components, namely, the Operating System, Web Server and WAF tech-
nology. With this solution, if the adversary succeeds to break one node, there is
a low probabilityof compromising the remaining redundant nodes [1].

The test-bed used Redmine as the target web application and was configured
to prevent the top 10 web attacks identified by OWASP.4 Redmine is an open
source project management web application, written using the Ruby on Rails
framework. In addition, the paper reports on comparative performance tests
between the two WAFs experimented, namely Naxsi and Modsecurity.

2 Related Work

A generic architecture where redundant proxies filter client requests to a redun-
dant group of diversified application servers was proposed to improve perfor-
mance [5]. The case study was based on a travel agency web infrastructure. The
level of redundancy depends on the current alert level. When the attack density
increases, the number of web servers that process each client request will also
increase and consequently the performance will degrade.

A study of different intrusion-tolerant architectures for web servers based on
intelligent adaptive reconfiguration was performed [4]. The objective is to help
to build a more secure and resilient server system.

Similar to our work, both authors designed solutions to protect a web ap-
plication. Both proposals use Snort5 Intrusion Detection System (IDS). Snort
is installed on the proxies, which have limitations in analyzing the application
layer. In contrast, this project focuses on providing availability and better per-
formance in the prevention of web attacks by implementing redundancy and
diversity in WAF proxies.

4 Top 10 2013. Retrieved June 15, 2016, from https://www.owasp.org/index.php/

Top_10_2013-Top_10
5 https://www.snort.org

324

OS Pairs Driver Kernel Sys.Soft. Total OS Pairs Driver Kernel Sys.Soft. Total
Win2000-Win2003 0 42 43 85 Win2003-Win2008 0 18 22 40
OpenBSD-FreeBSD 1 14 18 33 NetBSD-FreeBSD 2 13 10 25
OpenBSD-NetBSD 1 8 8 17 Win2000-Win2008 0 8 8 16
Debian-Red Hat 0 5 8 13 NetBSD-Solaris 0 4 6 10
FreeBSD-Solaris 0 5 3 8 OpenSolaris-Solaris 0 3 3 6
OpenBSD-Solaris 0 5 1 6 Solaris-Red Hat 0 3 3 6
NetBSD-Red Hat 0 0 6 6 FreeBSD-Red Hat 0 1 4 5
OpenBSD-Red Hat 0 1 3 4 NetBSD-Debian 0 0 4 4
FreeBSD-Win2000 1 3 0 4 OpenBSD-Win2000 0 3 0 3
NetBSD-Win2000 1 2 0 3 Solaris-Win2000 0 3 0 3
OpenBSD-Win2003 0 2 0 2 FreeBSD-Win2003 0 2 0 2
Solaris-Debian 0 1 1 2 Debian-Ubuntu 0 0 2 2
NetBSD-Win2003 0 1 0 1 NetBSD-Win2008 0 1 0 1
FreeBSD-Debian 0 0 1 1 FreeBSD-Win2008 0 1 0 1
Debian-Win2000 0 0 1 1 Ubuntu-Red Hat 0 0 1 1
Ubuntu-Win2000 0 0 1 1 Red Hat-Win2000 0 0 1 1
OpenBSD-Win2008 0 1 0 1 Solaris-Win2003 0 1 0 1
Debian-Win2003 0 0 1 1 Ubuntu-Win2003 0 0 1 1
Red Hat-Win2003 0 0 1 1

Table 1. Common vulnerabilities on isolated thin servers

2.1 Implementing Diversity

The work described in this paper implements diversity at the operating system,
web server and WAF technology levels. This section compares and discusses the
existing alternatives at each of these levels.

Operating System Table 1 shows the vulnerabilities shared by each pair
of operating systems between 1994 and 2011 as reported by the National Vul-
nerability Database [2]. The table shows that Ubuntu and Red Hat have only
one common vulnerability in system software making them good candidates for
comparison in a diversity experiment. Our work elected Ubuntu and the CentOS
distribution as the operating systems. CentOS was selected considering that it
is built from much of the Red Hat Enterprise Linux code base.

Web server The web servers addressed in our work are Apache and Nginx,
widely considered the two most popular web servers. As of November 17th, 2015,
Nginx 1.9.5 has no reported vulnerabilities, reducing the probability of it sharing
the vulnerabilities reported for the Apache 2.4.7, the versions used in this study.6

Web Application Firewall This work compared two of the most popular
WAF services, namely Modsecurity7 and Naxsi8 which integrate very well with,

6 Current CVSS Score Distribution For All Vulnerabilities. Retrieved November 17,
2015, from https://www.cvedetails.com

7 ModSecurity: Open Source Web Application Firewall. Retrieved October 28, 2015,
from https://www.modsecurity.org

8 Nbs-system/naxsi. Systems, network and cloud services. Retrieved June 06, 2016,
from https://github.com/nbs-system/naxsi

325

Fig. 1. Target architecture

respectively, Apache and Nginx. As of November 17th, 2015, neither Naxsi 0.54
or Modsecurity 2.7.7, the two versions used in this work, had any reported vul-
nerabilities.9 It is expected that using other WAF solutions and combine them
to have more diversified nodes will improve the web security. The number of
diversified nodes will depend on the security requirements.

3 Test-bed

Figure 1 depicts the target architecture used. All the components are deployed
between a Unified Threat Management (UTM) and the web servers. The UTM
includes network firewalling and anti-spam functions. All HTTP traffic is flowing
through the WAFs. Incoming requests are addressed to the WAFs, who are
responsible for forwarding them to the back-end web servers on behalf of the
originating client. The UTM equally plays the role of load-balancer, distributing
the load by the two “Level 1” WAFs. Each of the “Level 1” WAFs is connected
to a single “Level 2” WAF of the opposing model, thus enforcing all the requests
to be evaluated by the two WAF models. The “Level 2” WAFs send each of the
web requests to be processed by the web application. It should be noted that
WAFs use the reverse proxy mode, what permits to terminate connections if an
attack is detected. As will be discussed in the tests and performance evaluation
section, this option has the drawback of notably increasing latency.

3.1 Configuration

Each WAF is run on a virtual server emulating an Intel Xeon 2.4GHz with 2Gb of
RAM and a 30Gb hard drive. VirtualBox10 was used as the hyper-visor. Servers

9 Current CVSS Score Distribution For All Vulnerabilities. Retrieved November 17,
2015, from https://www.cvedetails.com

10 Welcome to VirtualBox.org! Retrieved June 15, 2016, from https://www.

virtualbox.org/.

326

were arranged in two combinations, to guarantee that each HTTP request will
necessarily traverse two distinct Operating Systems, Web Servers and WAFs.
The Naxsi servers used CentOS v. 7.1.1503 as the operating system, on top of
which Nginx 1.9.5 with the Naxsi 0.54 served HTTP requests. Modsecurity
servers putted together an Ubuntu 14.04.3 LTS operating system, Apache 2.4.7
and Modsecurity 2.7.7. All the software versions were selected for being the most
recent at the 30th of November of 2015, date of the beginning of the tests.

Nginx – Naxsi

Naxsi was configured with the core rules suggested at the framework web site11

and complemented with the doxi rules.12 Naxsi default rules aim at preventing
SQL injections, remote file inclusion, directory traversal, cross-site scripting, eva-
sion and file uploads. Doxi rules, which are available as an independent Github
repository aim to provide additional protection against this kind of attacks.

Naxsi was initially configured in “LearningMode”. With this setup, the HTTP
requests that raise suspicious are recorded in the error log file but are not blocked.
“LearningMode” facilitates the creation of a whitelist given that log records can
be applied to the Naxsi rule-sets using the nxapi tool.

Whitelists play a fundamental role in the reduction of false positives. To
create the whitelist, users are required to use the web application, traversing the
Naxsi WAF exclusively with legitimate traffic. This was accomplished by using
the firewall to restrict access to the application from the IP address producing
the legitimate learning traffic.

Apache – Modsecurity

Modsecurity using the OWASP Modsecurity Core Rule Sets (CRS)13 was en-
abled as an Apache2 module. According to the OWASP web site, Modsecurity
CRS provides protections for the following attack/threat categories:

HTTP protection detecting violations of the HTTP protocol and a locally
defined usage policy;

Real-time blacklist look-ups which utilizes 3rd party IP reputation;
HTTP denial of service protections defense against HTTP flooding and slow

HTTP DoS attacks;
Common web attacks protection detecting common web application secu-

rity attacks such as SQL injections, XSS and CSRF;
Automation detection detecting bots, crawlers, scanners and other surface

malicious activity;

11 https://github.com/nbs-system/naxsi
12 Doxi-rules. Retrieved June 06, 2016, from https://bitbucket.org/lazy_dogtown/

doxi-rules
13 Category:OWASP ModSecurity Core Rule Set Project. Retrieved June 15,

2016, from https://www.owasp.org/index.php/Category:OWASP_ModSecurity_

Core_Rule_Set_Project

327

Integration with anti-virus scanning for file uploads detects malicious files
uploaded through the web application;

Tracking sensitive data tracks credit card usage and blocks leakages
Trojan protection detecting access to Trojans horses;
Identification of application defects alerts on application, misconfigurations;
Error detection and hiding disguising error messages sent by the server;

Modsecurity was configured in “self-contained mode”, where the triggering
of any rule will result in the execution of any disruptive/logging actions specified
on the current rule. It should be noted that “self-contained mode” is in contrast
with Naxsi mode as the latter follows a scheme where each matched rule adds
to the request score and requests are dropped if their score is above a predefined
threshold. In addition, Naxsi redirects dropped requests to “/RequestDenied”
page while Modsecurity returns a page with “Forbidden” message (code 403).

Load balancer

The load balancer service was configured with a HTTP monitor, which con-
stantly sent fake requests to the “Level 1” WAFs to check their availability.

To ensure service availability in case of “Level 2” WAF failures, “Level 1”
servers voluntarily terminate their HTTP server if they find their counterpart
to be unavailable. Monitoring is performed by sending HTTP requests every 30s
using the monit tool.14

4 Tests and Performance Evaluation

The WAFs were evaluated in separate and combined. Naxsi, Modsecurity and
combinations of both were evaluated according to their security effectiveness,
throughput, stability, reliability and usability. In this paper, security effective-
ness measures their capability to detect and repel specific attacks. To evaluate
the overhead introduced by WAFs, response times were compared to a setting
without WAFs. The stability and reliability measure the WAFs capability to
distinguish legitimate from malicious traffic.

4.1 Security Effectiveness

The effectiveness of the security provided by the redundant WAF architecture
was evaluated using the OWASP Zed Attack Proxy (ZAP),15 the Open Vulner-
ability Assessment System (OpenVAS)16 and the burp17 suites. In addition, we

14 Easy, proactive monitoring of Unix from https://mmonit.com
15 OWASP Zed Attack Proxy Project. Retrieved October 28, 2015, from https://www.

owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
16 Open Vulnerability Assessment System. Retrieved June 06, 2016, from http://www.

openvas.org
17 Burp Suite. Retrieved June 15, 2016, from https://portswigger.net/burp

328

also evaluated security by running customized security tests taking in consider-
ation the vulnerabilities reported up to the 12th of March of 2016 in Redmine
Security Advisories.18

Automatic Tests In the tests without WAF protection, the OWASP Zed
Attack Proxy exposed an XSS vulnerability, considered to be of high-risk level.
In addition, several low risk level vulnerabilities (incomplete or no cache-control
pragma HTTP header set, absence of anti-CSRF Tokens and password auto-
complete in the browser) were found.

When the Naxsi WAF was used, the test identified two low-level risks vulner-
abilities: password auto-completes in the browser and the absence of anti-CSRF
tokens. A third low-level risk was reported by the scanner: the incomplete or no
cache-control and pragma HTTP header set. However, the vulnerability to this
risk is incorrectly diagnosed by ZAP, which checks if cache-control HTTP header
is set with no-cache, no-store, must-revalidate, private and that the pragma
HTTP header is set with no-cache. If any of them is missing, it is considered in-
complete and thus triggers the alert. The redmine application has a customized
page (404.html) which is returned in case of error code 404 and it is not delivered
with the recommended settings mentioned. It was also verified that the server in
some cases may return a response with two cache-control headers. This problem
was reported to OWASP ZAP support team and raised an issue on Github,19

in order to fix the cache control scanner so that it can accommodate multiple
headers.

The scan results using the Modsecurity WAF highlighted two low risks level
vulnerabilities, namely: password auto-completes in the browser and the absence
of anti-CSRF tokens. Contrary to Naxsi, With Modsecurity the incomplete or no
cache-control and pragma HTTP header set vulnerability is not detected. The
error page sent by the server with incorrect parameters is disguised. It should be
noted that, OWASP ZAP requires disabling the rules with id 960015 and 960021
to be able to scan the application. These rules respectively check if an accepted
header is present and if an accepted header exists, but is empty. The problem
emerges from Modsecurity generating the warning about the detection of CSRF
while OWASP ZAP expects it to be created by the application. This is an inter-
esting proof of concept as Modsecurity uses content injection to inject a bit of
JavaScript to set the CSRF token on any URLs or forms for any HTML pages
requested. When the subsequent request comes in after rule 981144, Modsecurity
compares the CSRF and rejects any requests without a valid token.

Not surprisingly, the tests sequentially composing Naxsi and Modsecurity
exposed the two low-level risk vulnerabilities previously observed, namely: pass-
word auto-complete in the browser and the absence of anti-CSRF tokens. Al-

18 Redmine Security Advisories. Retrieved June 06, 2016, from https://www.redmine.

org/projects/redmine/wiki/Security_Advisories
19 Incomplete or no cache-control and pragma HTTP header (False positive?) Is-

sue #2405 zaproxy/zaproxy. Retrieved June 06, 2016, from https://github.com/

zaproxy/zaproxy/issues/2405

329

Table 2. Customized tests results

Severity Description No WAF Naxsi Modsecurity Naxsi+
Modsecurity

Moderate Open Redi-
rect

User redi-
rection
possible

Blocked Not blocked Blocked

High Persistent
XSS

XSS possi-
ble

Blocked Blocked Blocked

High Bypass
CSRF

Possible to
create users
with admin
privileges

Not blocked Not blocked Not blocked

Table 3. Vulnerabilities identified in automatic and customized Tests

Test No WAF Naxsi Modsecurity Naxsi+Modsecurity
Automatic 4 3 2 2
Customized 3 1 2 1
Distinct 5 3 2 2

though these results suggest that there is no considerable security improvement
when WAFs are combined, it should be noted that the Level 1 WAF can hide the
presence of Level 2 WAF. This creates additional challenges to the adversary,
that may show beneficial in customized attacks scenarios. The OpenVAS scan
did not report any web vulnerability in all of the test cases.

Customized Tests Table 2 shows that using both WAFs secures Redmine
application against attacks defended by any of the WAFs. The customized tests
were designed taking into consideration the list of security vulnerabilities20 that
were fixed in Redmine releases prior to its version 1.3. An example of the cus-
tomized “Bypass CSRF” attack which was not avoided by any of the WAFs can
be found in Appendix A. This attack aims to create a user with admin privileges.
The session must be from a user with permissions to create users.

Table 3 depicts a comparison between the number of vulnerabilities when
not using a WAF protection, using naxsi or modsecurity separately and com-
bining both WAFs. Results show that combination of both WAFs improves the
protection of redmine application over the possible attacks. The last row counts
the number of distinct vulnerabilities after remaining those that were found in
both experiments.

20 Redmine Security Advisories. Retrieved June 06, 2016, from https://www.redmine.

org/projects/redmine/wiki/Security_Advisories

330

4.2 Performance

The performance evaluation aimed to determine the latency penalty imposed
by the use of the WAFs. Tests consisted in simulating 25 concurrent users for a
600s period using the visual studio web performance and load tests tool.21 The
tests considered distinct activities, including documents download and upload,
retrieval of web pages and database intensive operations, for example, web site
content search. To force the requests to be delivered to servers, all content caching
was disabled.

The average response time confirms the expectations that with some excep-
tions, the WAF adds some delay in the access to Redmine pages. However, it
should be noted that most of the average response times lie within the 1.0s limit
that is generally considered acceptable for web site navigation.22 The results
evidence two anomalies with the average response time of a login page (/login
POST) and a webpage running a database query (/my/page) being consistently
lower when naxsi and modsecurity are used. The results were observed repeat-
edly in the multiple experiments performed to identify the reason, although the
root cause was not found.

Table 4 depicts the response times of the distinct operations in scenarios that
make use of individual WAFs, combine them sequentially Naxsi + Modsecurity
and put together the architecture presented in Fig. 1 concurrent 2x Naxsi +
Modsecurity. The Under Attack column extends the later with a concurrent
application of the OWASP ZAP tool.

A side-by-side comparison of Naxsi and Modsecurity shows no clear winner,
with each of the WAFs presenting an improved performance on some of the web
pages tested. Relevant for this study is the comparison of the composition of both
WAFs with and without a load balancer, which evidence that the introduction of
the later can absorb the negative performance penalty of the former by equally
distributing the load by the two WAF circuits defined.

The standard deviation of the response time metric, depicted in Fig. 2, clearly
shows that the request type is the most influencing factor in the predictability of
the response time. The exception is the Naxsi+Modsecurity composition when
the load balancer is not used which consistently presents an above average stan-
dard deviation.

4.3 Reliability and Usability

The experience in implementing both WAFs clearly revealed the relevance of
whitelists in the usability of the protected web sites as a number of false positives
could easily be found. In this regard, the “LearningMode” of Naxsi and its nxtool
are a competitive advantage over Modsecurity. The “LearningMode” permits to

21 Performance Testing Guidance for Web Applications. Retrieved June 06, 2016, from
https://msdn.microsoft.com/en-us/library/bb924375.aspx

22 Response Time. Retrieved June 06, 2016, from http://www.loadtestingtool.com/

help/response-time.shtm

331

Table 4. Average Response Time

Average page response time (in seconds)

No Naxsi+ Concurrent
Page Naxsi Modsec 2x Naxsi + Under

WAF Modsec Modsec Attack

https://moldtrack.ai-emea.com 1.93 2.47 2.23 3.30 1.54 2.01

/attachments/432/Report August.pdf 0.41 0.42 0.59 1.00 0.68 1.17

/issues/show/1219 3.97 4.39 4.88 5.25 4.42 6.60

/login [POST] 1.26 1.18 1.78 2.21 1.35 2.39

/my/page 0.72 0.44 0.47 0.50 0.67 1.07

/projects 0.26 0.41 0.28 0.51 0.55 0.95

/projects/activity/antex-infra 0.56 1.88 3.20 3.26 0.47 1.44

/projects/antex-infra/documents 0.12 0.24 0.36 0.61 0.27 0.60

/projects/antex-infra/issues 0.76 1.01 1.07 1.52 1.03 1.74

/projects/antex-infra/issues/new GET 0.84 0.98 1.00 1.35 0.92 1.80

/projects/antex-infra/issues/new POST 0.94 1.05 1.23 1.44 1.60 2.86

/projects/settings/antex-infra 0.21 0.49 0.57 0.95 0.41 0.87

/projects/show/antex-infra 0.25 0.45 0.48 0.60 0.39 0.78

/search/index/antex-infra 0.39 0.57 0.42 0.72 0.63 1.12

define custom made rules in production sites, avoiding the risk of locking out
legitimate users from the application.

Naxsi does not rely upon predefined signatures, so it should be capable of
defeating complex, unknown, obfuscated attack patterns. Naxsi by default reads
a small subset of simple (and readable) rules containing of known patterns in-
volved in website vulnerabilities. For example, <, | or drop expression are not
supposed to be part of a URI. In terms of usability, the rules are very sim-
ple and easy to understand. In contrast, Modsecurity uses the Perl Compatible
Regular Expressions (PCRE) library for pattern matching of the rules against
requests. PCRE is a popular library, available for many operating systems and
therefore, highly portable. Using regular expressions make rule creation more
flexible, although more complex.

5 Conclusion and Future Work

The traditional firewall architectures are in most cases designed for availability
and simplify administration tasks by implementing redundant nodes with the
exact same characteristics and configuration. From a security point of view,
diversification enables the servers to be more resilient to attacks because the
probability of using the same exploit to compromise diverse systems is lower.
This paper investigated a combination of Naxsi and Modsecurity, two popular
open source WAFs, to protect a web infrastructure.

The security test results show that the combination of Naxsi and Modsecurity
offer a better protection. This is a great advantage against high skilled adver-

332

Fig. 2. Response Time Standard Deviation

saries, which combine multiple attack methodologies and tools in order to reach
and compromise their target. Our solution trades off security by performance. As
expected, our proposed architecture adds overhead to the response time of the
requests due to the additional processing involved. However, the results showed
that the user experience can still be considered acceptable, specially when load
is balanced by two alternative threads.

As future work, authors plan to focus in improving the security of the pro-
posed solution by implementing the rejuvenation principle and a combination of
dynamic application security testing (DAST) [6]. The rejuvenation implies that
the nodes are periodically restored to the last correct known image. The archi-
tecture and technology used in this study facilitates the implementation of this
concept. A virtual machine can be easily restored from a snapshot and the re-
dundant node ensure the service continuity while the other node is rejuvenated.
The DAST is a process of security testing an application or software product in
a running state. A DAST scanner (Burp, OWASP Zed Attack Proxy) generates
a report that serves as an input for WAF signatures.

References

1. A. Bessani, A. Daidone, I. Gashi, R. Obelheiro, P. Sousa, and V. Stankovic. Enhanc-
ing fault/intrusion tolerance through design and configuration diversity. In Proc. of
the 3rd Workshop on Recent Advances on Intrusion-Tolerant Systems (WRAITS),
June 2009.

333

2. M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. Analysis of oper-
ating system diversity for intrusion tolerance. Software: Practice and Experience,
44(6):735–770, 2014.

3. E. Kazanavicius, V. Kazanavicius, A. Venckauskas, and R. Paskevicius. Securing
web application by embedded firewall. Elektronika ir Elektrotechnika, 119(3):65–68,
2012.

4. S. Raj and G. Varghese. Analysis of intrusion-tolerant architectures for web servers.
In Procs. of the 2011 International Conference In Emerging Trends in Electrical and
Computer Technology (ICETECT), pages 998–1003. IEEE, March 2011.

5. A. Saidane, V. Nicomette, and Y. Deswarte. The design of a generic intrusion-
tolerant architecture for web servers. IEEE Transactions on Dependable and Secure
Computing, 6(1):45–58, 2009.

6. N. Tymoshyk and S. Breslavskyi. Web application firewalls: Next big thing in secu-
rity. http://www.esecurityplanet.com/network-security/web-application-firewalls-
next-big-thing-in-security.html, March 2015. Retrieved June 06, 2016.

A Script of CSRF attack

<html>

<body>

<form method=POST action="https://moldtrack.ai-emea.com/users/add"\

<input style="display: none" type="text" value="adversary"

size="25" name="user[login]" id="user_login"/>

<input style="display: none" type="text" value="adversary"

size="30" name="user[firstname]" id="user_firstname"/>

<input style="display: none" type="text" value="adversary"

size="30" name="user[lastname]" id="user_lastname"/>

<input style="display: none" type="text" value="adversary@ai-emea.com"

size="30" name="user[mail]" id="user_mail"/>

<input style="display: none" type="password"

size="25" name="password" id="password" value="adversary"/>

<input style="display: none" type="password"

size="25" name="password_confirmation" id="password_confirmation"

value="adversary"/>

<input style="display: none" type="checkbox"

value="1" name="user[admin]" id="user_admin"/>

<input style="display: none" type="hidden"

value="1" name="user[admin]"/>

<input style="display: none" type="submit"

value="Create" id="commit" name="commit"/>

</form>

<script>document.getElementById("commit").click();</script>

</body>

</html>

334

