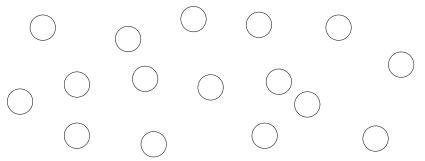
When Cars Start Gossiping MiNEMA'08

Paolo Costa¹ Daniela Gavidia¹ Boris Koldehofe² Hugo Miranda³ Mirco Musolesi⁴ Oriana Riva⁵

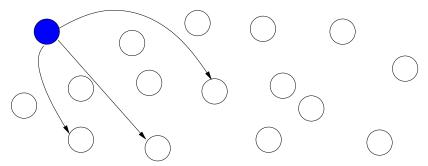
¹ Vrije Universiteit Amsterdam

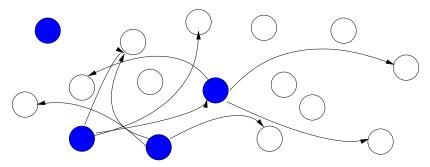
² IPVS - Universität Stuttgart

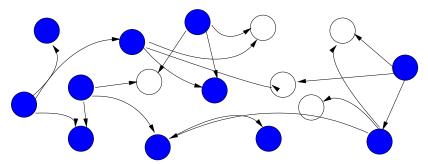
³ University of Lisbon

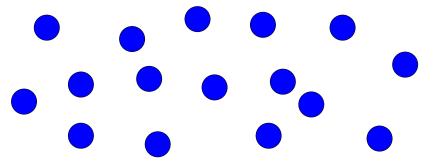

⁴ Dartmouth College

⁵ ETH Zürich


April 1st, 2008


- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node


- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node


- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node

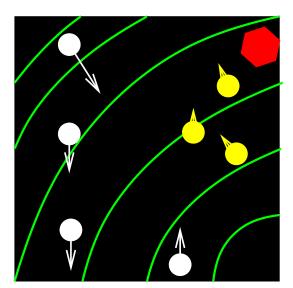
- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node

- A communication paradigm
 - Analogous to rumour or epidemic spreading
 - When receiving a message for the first time, each node retransmits it to a subset of his neighbours
 - With a large probability, message is delivered to every node

- Was shown to be:
 - Easy to implement
 - Scalable: nodes just need a partial view of the network
 - Highly resilient: bimodal
- Applications
 - Data replication
 - Information dissemination
 - Mobile computing

Vehicular Networks

- Data networks using computer devices embedded in cars
- Applications
 - Locating free parking spots
 - Traffic condition
 - Requests for assistance
 - Collision avoidance
 - Localised advertising
 - Looking ahead


Vehicular Ad Hoc Networks (VANETs)

- MANETs of vehicles
 - Infrastructure-less
 - Fully decentralised
 - Self managed

Advantages of ad hoc

- Handle massive amounts of:
 - Data speed, direction, alerts, ads Hosts traffic jam, downtown
- Applications do not present a clear billing model
- Most of the information has a local scope

Application Examples Alice's Foggy Ride

Application Examples

Charles's Enhanced Driving Experience

```
Lunch
 The Great Tavern
      Today's Special: Codfish
      Menu: 12Eur
      West End: 12m
 Glasgow's Dinner
      Eat as much as you can: 15Eur
     Down Town: 20m
Gas
  Shell
      10% Discount for 20+ gallons
      Highway 8N, 10m
B&B
```

Why Should Cars Gossip?

Why gossip?

Network dynamicity Hard to keep structure

Hosts move at high speed

Large scale In number of hosts, in geographical extension

Related Work

- A number of projects addressed car-to-car short range communication
 - Including gossip algorithms

Gossip in VANETs poses new challenges

$Gossip(Wired) \neq Gossip(MANET) \neq Gossip(VANET)$

	Wired	MANETs	VANETs
Power	Unlimited	Scarce	Unlimited
Computing Power	Plenty	Scarce	Plenty
Memory	Plenty	Constrained	Plenty
Bandwidth	Unconstrained	Constrained	
Network Delays	Regular	Irregular	
Movement/ Connectivity	Stable	Unpredictable	Predictable
Neighbourhood	Unrestricted	Near by hosts	
Node's Speed	n.a.	Low	High

How Should Cars Gossip?

Challenges to be addressed

Limited Connectivity

- Random selection of the neighbours is biased
 - You can only communicate with close by cars
- Cluster formation
 - A challenge to bimodal behaviour

How to ensure wide message propagation?

- Hybrid car-to-car + infra-structured
- Infrastructure possibly deployed at specific points (e.g. gas stations)

Mobility Patterns

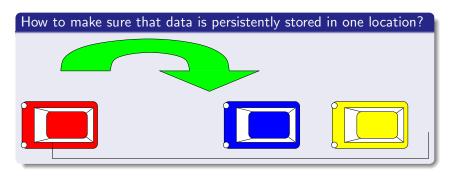
- Cars do not move at random
 - Partial occupation of the region
 - Attracted to specific locations at specific times
 - downtown in the morning
 - Create dynamic but well-defined network topologies

How will a random protocol react to a predictable movement pattern?

Opportunistic Routing

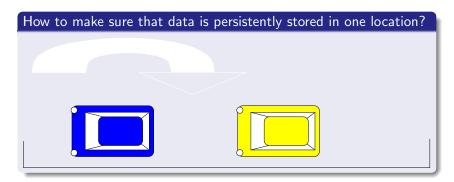
- Connectivity is not always guaranteed in VANETs
 - E.g. in rural areas
- Delay-Tolerant Networks (DTNs) have been investigated for regions with low node density
 - DTNs do not scale well

Can gossip protocols improve the scalability of DTNs?

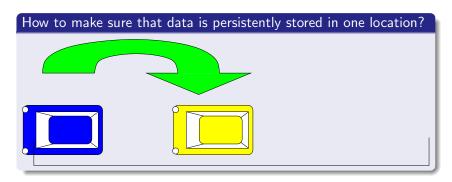

Geographical Information

- It is safe to assume that all cars will have a GPS on-board soon
 - Permits to tag some data with a location
 - E.g. cars parked on the road
 - Obstacles
 - Data can be restricted to some region of interest

Can we make a localised gossip?


Persistence

- Some data is persistent
 - At least for some amount of time
 - E.g. road blocks


Persistence

- Some data is persistent
 - At least for some amount of time
 - E.g. road blocks

Persistence

- Some data is persistent
 - At least for some amount of time
 - E.g. road blocks

Communication Paradigms

- Gossip may not be enough
- Pub-sub?
 - E.g. announce interest in restaurants

How to manage subscriptions and deliver data?

- Taking advantage of the known route
 - Using other cars heading to the subscriber?
 - Storing data on info-stations where it is known that subscribers will pass

Data Management

- Aggregation is fundamental for system scalability
 - Widely studied problem for sensor networks
- Examples
 - Traffic jam queries and replies
 - Registrations

How to aggregate data in a mobile environment?

Security and Privacy

- To cooperate should be inexpensive
 - Use of unlicensed spectrum
 - Cars have plenty of resources
 - Message forwarding occurs in background
- It should not compromise the user
 - E.g. snooping message sources and content to learn the location of persons you know
- Information must be validated
 - Announce a severe traffic jam in our intended route

How to penalise malicious users and enforce user anonymity?

Summary

- VANETs are a challenging networking environment
 - Different from MANETs and Wired Networks
 - With promising applications
- Gossip is a communication model
 - Robust
 - Scalable
- We believe that gossip will play an important role in vehicular applications
- Many challenges to be addressed